

4-(3-Coumarinyl)-4-thiazolin-2-one Benzylidene-hydrazone with Antituberculosis Activity

Aysel Gürsoy and Nilgün Karah

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Istanbul, Istanbul (Turkey)

I.Ü. Kütüphane ve Dok. D. Bşk.
Demirbaş No : M3703
Kayıt No :
Sıfırlama No :

Summary

In this study a new series of 4-(3-coumarinyl)-4-thiazoline-2-one benzylidenehydrazones (**3a-v**) were synthesized by condensation of 3-(ω -bromoacetyl)coumarins (**1a** and **1b**) with 1-substituted benzylidene-4-substituted thiosemicarbazides (**2a-l**). Structures of the title compounds were elucidated by elemental analyses and spectrometric data (UV, IR, 1 H-NMR and EIMS). These new compounds and some previously reported compounds (**1a-d**) were evaluated for antituberculosis activity against *Mycobacterium tuberculosis* H37Rv. The compounds exhibited varying degrees of inhibition in the in vitro primary screening that was conducted at 12 μ g/ml against *M. tuberculosis* H37Rv in BACTEC 12B medium using the BACTEC 460 radiometric system. **1b**, **3b**, **3e**, **3h**, **3o** and **3p** demonstrating activity in the primary screen were re-tested at lower concentrations against *M. tuberculosis* H37Rv to determine the actual minimum inhibitory concentration (MIC) in CABTEC 460 and Alamar Blue assay (MABA). The most active compound was found to be **1b**. The structure-activity relationships of the derivatives were investigated.

Zusammenfassung

4-(3-Coumarinyl)-4-thiazolin-2-on-benzylidenehydrazone mit antituberkulöser Aktivität

In dieser Arbeit wurde durch Kondensation von 3-(ω -Bromoacetyl)coumarinen (**1a** und **1b**) mit 1-substituierten Benzyliden-4-substituierten Thiosemicarbaziden (**2a-l**) eine neue Reihe von 4-(3-Coumarinyl)-4-thiazolin-2-on-benzylidenehydrazonen (**3a-v**) synthetisiert. Die Strukturen der Titelsubstanzen wurden mittels Elementaranalyse und spektroskopischen Methoden (UV, IR, 1 H-NMR und EIMS) aufgeklärt. Die neuen Substanzen und einige bereits veröffentlichte (**1a-d**) wurden gegen *Mycobacterium tuberculosis* H37Rv getestet. Dazu wurden das radiometrische System BACTEC 460 und BACTEC 12B Medium verwendet. In der primären Testphase zeigten die Verbindungen in einer Konzentration von 12 μ g/ml verschiedene starke Aktivität gegen *M. tuberculosis* H37Rv. In der primären Testphase zeigten **1b**, **3b**, **3e**, **3h**, **3o** und **3p** eine Wirkung. Sie wurden hinsichtlich der MHK-Werte untersucht, wobei die Testmethoden CABTEC 460 und Alamar Blue Assay (MABA) verwendet wurden. **1b** erwies sich als aktivste Verbindung. Die Struktur-Wirkungs-Beziehungen wurden ermittelt.

Key words Antituberculosis drugs · Coumarinylthiazolinylhydrazones, antituberculosis activity, structure-activity relationship, synthesis

Arzneim.-Forsch./Drug Res. **50** (I), 167–172 (2000)

1. Introduction

Compounds carrying the coumarin skeleton play important roles in therapy. Among developed compounds of the coumarin series are the anticoagulant drugs such as dicumarol [1], warfarin [2] and acenocoumarol [3]. Chromonar is a coronary vasodilator [4]. The methoxypropylhydroxymercumate derivative mercumatilin exhibits diuretic activity [5]. Moreover, novobiocin is an antibiotic contain-

ing the coumarin moiety that it has a fairly broad range of activity against gram-positive and some gram-negative bacteria [6]. On the other hand, thiazolinylhydrazones have been reported to exhibit antitubercular [7], antibacterial and antifungal activities [8].

Encouraged by these findings and in continuation of our work on the synthesis of 4-thiazolinylarylidenehydrazones [9–12], we report here the synthesis

of the new coumarinyl-4-thiazolinylbenzylidenehydrazones, evaluation of in vitro antituberculosis activity and structure-activity relationship of these new compounds and some previously reported compounds.

2. Material and methods

2.1. Chemistry

Melting points were estimated with a Büchi 530 melting point apparatus (Flawil, Switzerland) in open capillaries and are uncorrected. Elemental analyses were performed on a Carlo Erba 1106 elemental analyzer (Milano, Italy). IR spectra were recorded on KBr (BDH, Poole, England) discs, using a Perkin-Elmer Model 1600 FT-IR spectrometer (Norwalk, CT, USA). ¹H-NMR spectra were obtained on Bruker AC 200 (200 MHz) (Rheinstetten, Germany) spectrophotometer using DMSO-d₆ (E. Merck, Darmstadt, Germany). EIMS were determined on a VG Zab Spec (70 eV) mass spectrometer (Manchester, England). Starting materials were purchased from E. Merck.

2.1.1 Synthesis of 4-(3-coumarinyl)-4-thiazolin-2-one benzylidenehydrazones (3a–v)

A solution of 3-(ω -bromoacetyl)coumarins (**1a** and **1b**) (0.0025 mol) and 1-substituted benzylidene-4-substituted thiosemicarbazides (**2a–l**) (0.0025 mol) in chloroform-ethanol (2:1) was refluxed for 2 h and allowed to stand overnight. The crystals thus obtained were filtered, then crystallized from ethanol or ethanol-chloroform (2:1).

Spectral data of **3a**: UV (λ_{max} , EtOH, ϵ , nm): 373 (24785), 283 (17816), 253 (20614). IR (KBr, cm⁻¹): 2717 (NH⁺), 1717 (C = O), 1582 (C = N). ¹H-NMR (DMSO-d₆, δ , ppm): 1.46 (t, J: 6.9 Hz, 3H, CH₂CH₃), 4.49 (q, J: 6.9 Hz, 2H, CH₂CH₃), 6.78 (s, 1H, thiazoline 5-H), 7.36–7.70 (m, 8H, aromatic), 8.05 (s, 1H, N = CH), 9.26 (s, 1H, coumarin 4-H). EIMS (70 eV) m/z (%): 409 [M⁺, 100 (411, 55)], 380 [8 (382, 3)], 317 (13), 271 (35), 258 (44), 244 (47), 243 (14), 230 (31), 212 (19), 201 (12), 174 (20), 172 (29), 166 [33 (168, 14)], 152 [9 (154, 3)], 145 (13), 142 (13), 139 [11 (141, 4)], 124 [18 (126, 8)], 111 [13 (113, 8)], 102 (15), 89 (40), 75 (14).

Spectral data of **3e**: UV (λ_{max} , EtOH, ϵ , nm): 360 (32604), 280 (23303). IR (KBr, cm⁻¹): 3238 (OH), 2726 (NH⁺), 1725 (C = O), 1584 (C = N). ¹H-NMR (DMSO-d₆, δ , ppm): 1.36 (t, J: 6.9 Hz, 3H, OCH₂CH₃), 4.07 (q, J: 6.9 Hz, 2H, OCH₂CH₃), 4.22 (br. s, 1H, NH⁺), 4.59 (d, J: 3.3 Hz, 2H, CH₂-CH = CH₂), 4.97, 5.08 (dd, J: 17.1, 10.4 Hz, CH₂-CH = CH₂), 5.74–5.90 (m, 1H, CH₂-CH = CH₂), 6.75 (s, 1H, thiazoline 5-H), 6.82–7.82 (m, 8H, aromatic, OH), 8.21 (s, 1H, N = CH), 8.30 (s, 1H, coumarin 4-H). EIMS (70 eV) m/z (%): 447 (M⁺, 59), 418 (13), 284 (69), 283 (34), 269 (19), 258 (19), 257 (100), 256 (39), 244 (13), 174 (15), 172 (35), 171 (17), 165 (15), 163 (16), 149 (24), 145 (19), 137 (21), 136 (27), 135 (44), 129 (20), 121 (18), 115 (22), 109 (18), 107 (20), 106 (20), 105 (34), 99 (24), 98 (28), 97 (43), 95 (23), 91 (50), 85 (25), 84 (27), 83 (52), 81 (37), 79 (28), 78 (26), 77 (45), 73 (41), 71 (39), 70 (34), 69 (51), 67 (33), 63 (29).

Spectral data of **3g**: UV (λ_{max} , EtOH, ϵ , nm): 374 (27170), 283 (20218). IR (KBr, cm⁻¹): 3243 (OH), 2739 (NH⁺), 1714 (C = O), 1585 (C = N). ¹H-NMR (DMSO-d₆, δ , ppm): 0.79 (t, J: 7.3 Hz, 3H, CH₂CH₂CH₂CH₃), 1.20 (sex., J: 7.4 Hz, 2H, CH₂CH₂CH₂CH₃), 1.65 (p, J: 7.3 Hz, 2H, CH₂CH₂CH₂CH₃), 3.86 (t, J: 7.4 Hz, 2H, CH₂CH₂CH₂CH₃), 4.19 (s, 1H, NH⁺), 6.88 (s, 1H, thiazoline 5-H), 6.90–7.88 (m, 8H, aromatic, OH), 8.41 (s, 1H, N = CH), 8.61 (s, 1H, coumarin 4-H).

Spectral data of **3i**: UV (λ_{max} , EtOH, ϵ , nm): 383 (28989), 282 (22831), 256 (26155). IR (KBr, cm⁻¹): 2658 (NH⁺), 1708 (C = O), 1567 (C = N). ¹H-NMR (DMSO-

d₆, δ , ppm): 1.12–2.63 (m, 11H, cyclohexyl), 6.55 (s, 1H, thiazoline 5-H), 7.41–7.83 (m, 8H, aromatic), 8.31 (s, 1H, N = CH), 8.32 (s, 1H, coumarin 4-H). EIMS (70 eV) m/z (%): 463 [M⁺, 30 (465, 13)], 446 (20), 393 (41), 381 [30 (383, 12)], 244 (31), 230 (13), 184 (42), 156 (30), 149 (19), 132 (23), 128 (34), 99 (19), 97 (17), 88 (42), 87 (25), 86 (53), 85 (21), 84 (18), 83 (34), 73 (18), 71 (36), 70 (31), 69 (38), 67 (15), 57 (100), 56 (27).

Spectral data of **3n**: UV (λ_{max} , EtOH, ϵ , nm): 367 (24025), 280 (18266). IR (KBr, cm⁻¹): 2695 (NH⁺), 1725 (C = O), 1582 (C = N). ¹H-NMR (DMSO-d₆, δ , ppm): 4.46 (d, J: 4.9 Hz, 2H, CH₂-CH = CH₂), 4.97, 5.08 (dd, J: 17.2, 10.3 Hz, 2H, CH₂-CH = CH₂), 5.80–5.87 (m, 1H, CH₂-CH = CH₂), 6.69 (s, 1H, thiazoline 5-H), 7.46–8.06 (m, 7H, aromatic), 8.24 (s, 1H, N = CH), 8.30 (s, 1H, coumarin 4-H). EIMS (70 eV) m/z (%): 499 [M⁺, 73 (501, 100), (503, 33)], 395 [19 (397, 20)], 362 [28 (364, 24)], 361 [57 (363, 51)], 347 [32 (349, 36)], 335 [37 (337, 38)], 321 [10 (323, 10)], 250 [21 (252, 24)], 198 (31), 178 (18), 164 (14), 138 [22 (140, 10)], 129 (25), 111 [23 (113, 19)].

Spectral data of **3r**: UV (λ_{max} , EtOH, ϵ , nm): 373 (30423), 280 (22168), 225 (54323). IR (KBr, cm⁻¹): 3431 (OH), 1726 (C = O), 1578 (C = N). ¹H-NMR (DMSO-d₆, δ , ppm): 0.86 (t, J: 7.2 Hz, 3H, CH₂CH₂CH₂CH₃), 1.25 (sex., J: 7.4 Hz, 2H, CH₂CH₂CH₂CH₃), 1.71 (p, J: 7.2 Hz, 2H, CH₂CH₂CH₂CH₃), 3.82 (t, J: 7.4 Hz, 2H, CH₂CH₂CH₂CH₃), 6.23 (s, 1H, thiazoline 5-H), 6.87–7.73 (m, 6H, aromatic), 7.79 (s, 1H, N = CH), 8.33 (s, 1H, coumarin 4-H), 11.41 (s, 1H, bonded OH). EIMS (70 eV) m/z (%): 575 [M⁺, 13 (577, 27), (579, 15)], 377 [7 (379, 8)], 322 [28 (324, 29)], 207 (49), 198 [15 (200, 13)], 171 (18), 149 (23), 145 (16), 135 (30), 133 (19), 129 (25), 121 (19), 119 (22), 115 (24), 111 (18), 109 (18), 107 (21), 105 (41), 98 (31), 97 (39), 95 (28), 91 (50), 85 (24), 84 (25), 83 (44), 82 (25), 81 (33), 79 (27), 77 (44), 73 (37), 71 (37), 69 (56), 67 (41), 65 (22), 60 (36), 57 (76), 56 (49), 55 (100).

Spectral data of **3v**: UV (λ_{max} , EtOH, ϵ , nm): 365 (30742), 276 (25235), 222 (47353). IR (KBr, cm⁻¹): 3251 (OH), 2669 (NH⁺), 1731 (C = O), 1582 (C = N). ¹H-NMR (DMSO-d₆, δ , ppm): 1.17–2.64 (m, 11H, cyclohexyl), 1.37 (t, J: 6.9 Hz, 3H, OCH₂CH₃), 4.07 (q, J: 7.0 Hz, 2H, OCH₂CH₃), 6.41 (s, 1H, thiazoline 5-H), 6.80–8.18 (m, 7H, aromatic, OH), 8.21 (s, 1H, N = CH), 8.26 (s, 1H, coumarin 4-H). EIMS (70 eV) m/z (%): 567 [M⁺, 67 (569, 70)], 486 [23 (488, 15)], 485 [49 (487, 54)], 484 [10 (486, 23)], 418 (33), 409 (13), 403 [9 (405, 10)], 390 (17), 321 [18 (323, 17)], 322 [100 (324, 98)], 308 [28 (310, 27)], 164 (6), 150 (65), 137 (18), 136 (20), 122 (15), 91 (22), 83 (20), 57 (21), 56 (20), 55 (63).

2.2. In vitro evaluation of antituberculosis activity

A primary screening was conducted at 12.5 μ g/ml (or molar equivalent of highest molecular weight compound in a series of congeners) against *Mycobacterium tuberculosis* H37Rv in BACTEC 12B medium using the BACTEC 460 radiometric system. Compounds effecting < 90 % inhibition in the primary screen (MIC > 12.5 μ g/ml) were not generally evaluated further. Compounds demonstrating at least 90 % inhibition in the primary screen were re-tested at lower concentrations against *M. tuberculosis* H37Rv to determine the actual minimum inhibitory concentration (MIC) in the BACTEC 460 and a broth microdilution Alamar Blue assay (MABA). The MIC was defined as the lowest concentration inhibiting 90 % of the inoculum in the BACTEC 460 and effecting a reduction in 90 % fluorescence of relative to controls in the MABA.

2.2.1. BACTEC radiometric method of susceptibility testing

Inocula for susceptibility testing were either from a positive BACTEC isolation vial with a growth index (GI) of 500 or more, or a suspension of organisms isolated earlier on a conventional medium.

The culture was well mixed with a syringe and 0.1 ml of a positive BACTEC culture was added to each of the vials containing the test compounds (12.5 µg/ml). The standard vials contain rifampin (0.25 µg/ml). A control vial was inoculated with a 1:100 dilution of the culture. A suspension equivalent to a Mc Farland No. 1 standard was prepared in the same manner as a BACTEC positive vial when growth from a solid medium was used.

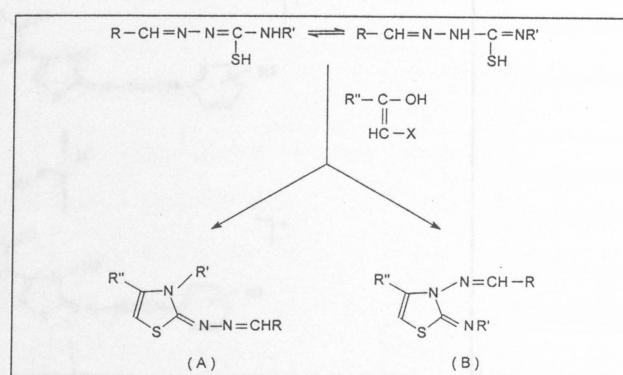
Each vial was tested immediately on a BACTEC instrument to provide CO₂ in the headspace.

The vials were incubated at 37 °C and tested daily with a BACTEC instrument. When the GI in the control read at least 30, the increase in GI (Δ GI) from the previous day in the control was compared with that in the drug vial. The following formula was used to interpret the results:

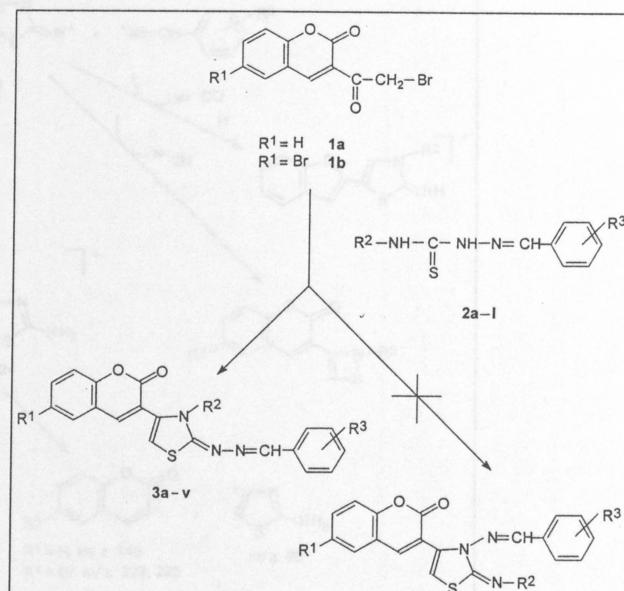
Δ GI control > Δ GI drug = susceptible

Δ GI control < Δ GI drug = resistant

If a clear susceptibility pattern (the difference of Δ GI of control and the drug bottle) was not seen at the time the control GI is 30. The vials were read for 1 or 2 additional days to establish a definite pattern of Δ GI differences.


3. Results and discussion

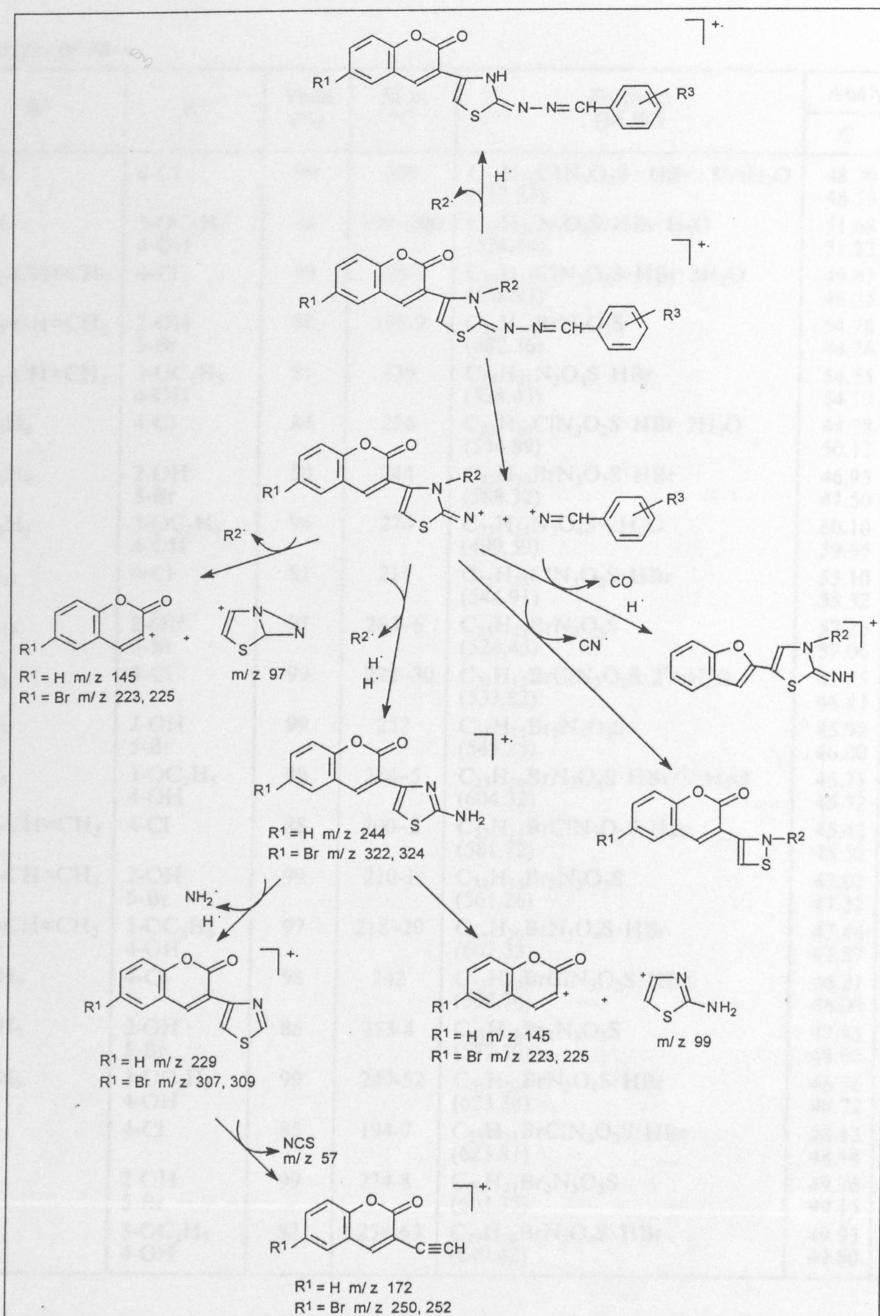
3.1. Chemistry


It is known that the thiosemicarbazones with α -haloketones give different products dependently on conditions of reaction [13]. Literature surveys show that this reaction in neutral medium results in the formation of 4-thiazolin-2-ylidene hydrazone [14, 15]. In thiazole cyclization the ene-thiol form determines the isomeric structures which may be considered. The ene-thiol formation involves the NH group adjacent to the more electron-withdrawing moiety [16] (Scheme 1). So that tautomerization is easier at N² position than it is at N⁴ position in our compounds and anticipated structure is A.

In view of these observations, the reaction of 3-(ω -bromoacetyl)coumarin **1a, b** with 1-substituted benzylidene-4-substituted thiosemicarbazides **2a–l** in neutral medium resulted in the formation of 4-(3-coumarinyl)-4-thiazoline-2-one benzylidenehydrazone **3a–v** (Scheme 2). The structures of the synthesized compounds were established by elemental analysis and spectrometric data (UV, IR, ¹H-NMR and EIMS) (Table 1).

The UV spectra of **3a–v** displayed two absorption bands at 276–283 and 360–384 nm regions due to coumarin and benzylidene hydrazone moieties, respectively [17, 18]. In the IR spectra of **3a–v** the lactone C = O band is observed in the 1731–1714 cm⁻¹ region confirming the coumarin structure [19, 20]. In the spectra of the compounds with hydrobromide acid salts (except **3d, 3h, 3r** and **3u**) bands resulting from NH⁺ stretching in the 2743–2606 cm⁻¹ region were found. The thiazolylhydrazone structure of **3a–v** was supported by its ¹H-NMR spectrum which included singlets at 6.23–6.78 ppm and 7.79–8.21 ppm due to the thiazoline 5-H and N = CH, respectively [21, 22]. Coumarin 4-H on the β -carbon of an α , β -unsaturated carbonyl group is highly deshielded due to the polarization caused by the electron attracting carbonyl function. Therefore, coumarin 4-H resonated as a

Scheme 1



Scheme 2

singlet at 8.26–9.26 ppm [23]. The absorption bands associated with other functional groups displayed peaks in the expected regions. Molecular ions of different intensity observed in the EIMS spectra of **3a, 3e, 3r** and **3v** confirmed their molecular weights. The fragments corresponding to 3-substituted-4-(3-coumarinyl)-2-imino-4-thiazoline and substituted benzylideneimine moieties formed by N-N bond rupture were consistent with the assigned structures [21, 24]. The fragments formed by loss of R² or CN from the 3-substituted-4-(3-coumarinyl)-2-imino-4-thiazoline moiety were the base peaks in most cases. Further fragments peculiar to the coumarin and thiazoline moieties were also observed in the spectra of these compounds [25, 26].

3.2. Activity of hydrazoneindolinones against *Mycobacterium tuberculosis* H37Rv

4-(3-Coumarinyl)-4-thiazoline-2-one benzylidenehydrazone **1a–d** which were previously reported [10] were evaluated for in vitro antituberculous activity against *Mycobacterium tuberculosis* H37Rv using the BACTEC 460 radiometric system [27].

Scheme 3

Rifampicin was used as the standard in the tests. As can be seen in Table 2, R^2 ethyl and cyclohexyl substituted compounds **1a-c** exhibited varying degrees of inhibition in the primary screening that was conducted at 12 $\mu\text{g}/\text{ml}$ in BACTEC 12B medium whereas the R^2 phenyl substituted compound **1d** was inactive against *M. tuberculosis* H37Rv in the same conditions.

These preliminary results indicate that R^2 alkyl and cycloalkyl substituted coumarinyl-4-thiazolinylbenzylidenehydrazones have antituberculosis potential and their structural modification may lead to new derivatives with enhanced activity. In the light of these results and in continuation of our work on coumarinyl-4-thiazolinylbenzylidenehy-

drazones, new R^2 alkyl and cycloalkyl substituted derivatives (**3a-v**) were synthesized and tested for in vitro antituberculosis activity against *M. tuberculosis* H37Rv to construct a structure-activity relationship. All the compounds tested (except **3r**) showed varying degrees of inhibition (Table 3).

1b showing 98 % inhibition in primary screen at 12 $\mu\text{g}/\text{ml}$ was re-tested at lower concentrations against *M. tuberculosis* H37Rv to determine the actual minimum inhibitory concentration (MIC) in the CABTEC 460 and broth microdilution Alamar Blue assay (MABA). The MIC of **1b** was found to be 12.5 and 6.25 $\mu\text{g}/\text{ml}$, respectively. New R^2 alkyl and cycloalkyl substituted coumarinyl-4-thiazolinylbenzylidenehydrazones **3b**, **3e**, **3h**, **3o**, and **3p**

Table 1: Physical constants of 3a-v.

Comp.	R ¹	R ²	R ³	Yield (%)	M.p. °C	Formula (M.W.)	Analysis (calc./found)		
							C	H	N
3a	H	C ₂ H ₅	4-Cl	99	209	C ₂₁ H ₁₆ CIN ₃ O ₂ S · HBr · 1½H ₂ O (517.83)	48.70 48.53	3.89 3.29	8.11 7.47
3b	H	C ₂ H ₅	3-OC ₂ H ₅ 4-OH	88	199-200	C ₂₃ H ₂₁ N ₃ O ₄ S · HBr · H ₂ O (534.44)	51.68 51.22	4.52 4.09	7.86 7.36
3c	H	CH ₂ -CH=CH ₂	4-Cl	99	198-9	C ₂₂ H ₁₆ CIN ₃ O ₂ S · HBr · 2H ₂ O (538.85)	49.03 49.55	3.92 3.64	7.79 7.66
3d	H	CH ₂ -CH=CH ₂	2-OH 5-Br	88	198-9	C ₂₂ H ₁₆ BrN ₃ O ₃ S (482.36)	54.78 54.26	3.34 3.22	8.71 8.30
3e	H	CH ₂ -CH=CH ₂	3-OC ₂ H ₅ 4-OH	81	239	C ₂₄ H ₂₁ N ₃ O ₄ S · HBr (528.43)	54.55 54.10	4.19 4.06	7.95 7.60
3f	H	n-C ₄ H ₉	4-Cl	84	226	C ₂₃ H ₂₀ CIN ₃ O ₂ S · HBr · 2H ₂ O (554.89)	49.78 50.12	4.54 3.88	7.57 7.01
3g	H	n-C ₄ H ₉	2-OH 5-Br	80	244	C ₂₃ H ₂₀ BrN ₃ O ₃ S · HBr (588.32)	46.95 47.50	3.77 3.38	7.14 6.40
3h	H	n-C ₄ H ₉	3-OC ₂ H ₅ 4-OH	96	274	C ₂₅ H ₂₅ N ₃ O ₄ S · 2H ₂ O (499.59)	60.10 59.65	5.85 5.17	8.41 8.14
3i	H	C ₆ H ₁₁	4-Cl	81	211	C ₂₅ H ₂₂ CIN ₃ O ₂ S · HBr (544.91)	55.10 55.32	4.25 3.96	7.71 7.02
3j	H	C ₆ H ₁₁	2-OH 5-Br	97	263-6	C ₂₅ H ₂₂ BrN ₃ O ₃ S (524.45)	57.25 57.06	4.22 4.38	8.01 7.90
3k	Br	C ₂ H ₅	4-Cl	99	228-30	C ₂₁ H ₁₅ BrCIN ₃ O ₂ S · 1½H ₂ O (533.82)	47.25 46.83	3.77 3.00	7.87 7.30
3l	Br	C ₂ H ₅	2-OH 5-Br	99	252	C ₂₁ H ₁₅ Br ₂ N ₃ O ₃ S (549.25)	45.92 46.00	2.75 2.58	7.65 7.59
3m	Br	C ₂ H ₅	3-OC ₂ H ₅ 4-OH	99	224-5	C ₂₃ H ₂₀ BrN ₃ O ₄ S · HBr · 1½H ₂ O (604.32)	45.71 45.72	3.67 3.61	6.95 6.81
3n	Br	CH ₂ -CH=CH ₂	4-Cl	88	200-2	C ₂₂ H ₁₅ BrCIN ₃ O ₂ S · HBr (581.72)	45.42 45.50	2.77 2.92	7.22 6.80
3o	Br	CH ₂ -CH=CH ₂	2-OH 5-Br	99	210-1	C ₂₂ H ₁₅ Br ₂ N ₃ O ₃ S (561.26)	47.07 47.32	2.69 2.70	7.48 7.38
3p	Br	CH ₂ -CH=CH ₂	3-OC ₂ H ₅ 4-OH	97	218-20	C ₂₄ H ₂₀ BrN ₃ O ₄ S · HBr (607.33)	47.46 47.57	3.48 3.56	6.91 6.95
3q	Br	n-C ₄ H ₉	4-Cl	98	242	C ₂₃ H ₁₉ BrCIN ₃ O ₂ S · HBr (597.76)	46.21 46.00	3.37 3.53	7.02 6.50
3r	Br	n-C ₄ H ₉	2-OH 5-Br	85	253-4	C ₂₃ H ₁₉ Br ₂ N ₃ O ₃ S (577.30)	47.85 48.00	3.31 3.18	7.27 6.95
3s	Br	n-C ₄ H ₉	3-OC ₂ H ₅ 4-OH	99	249-52	C ₂₅ H ₂₄ BrN ₃ O ₄ S · HBr (623.38)	48.16 48.72	4.04 4.12	6.74 6.75
3t	Br	C ₆ H ₁₁	4-Cl	85	194-7	C ₂₅ H ₂₁ BrCIN ₃ O ₂ S · HBr (623.81)	48.13 48.14	3.55 3.36	6.73 6.23
3u	Br	C ₆ H ₁₁	2-OH 5-Br	99	274-8	C ₂₅ H ₂₁ Br ₂ N ₃ O ₃ S (603.35)	49.76 49.15	3.50 3.53	6.96 6.58
3v	Br	C ₆ H ₁₁	3-OC ₂ H ₅ 4-OH	82	259-63	C ₂₇ H ₂₆ BrN ₃ O ₄ S · HBr (649.42)	49.93 49.60	4.19 4.09	6.47 6.97

showing > 90 % inhibition in the primary screen at 12 µg/ml were re-tested at lower concentrations against *M. tuberculosis* H37Rv to determine the actual minimum inhibitory concentration (MIC)

Table 2: Primary antituberculosis activity screen results of 1a-d^a.

Comp.	R ¹	R ²	R ³	MIC (µg/ml)	Inhibition %
1a	H	C ₂ H ₅	2-OH 5-Br	> 12.5	83
1b	H	C ₆ H ₁₁	3-OC ₂ H ₅ 4-OH	< 12.5	98
1c	H	C ₆ H ₁₁	2-NO ₂	> 12.5	12
1d	H	C ₆ H ₅	2-OH 5-Br	> 12.5	0

^{a)} MIC of rifampicin: 0.25 µg/ml, 97 % inhibition.

in the CABTEC 460 or broth microdilution Alamar Blue assay (MABA). MIC values of these compounds were found to be 12.5 or > 12.5 µg/ml (Table 4).

As can be seen in Tables 2 and 3 the most active compounds were R³ 3-ethoxy and 4-hydroxy substituted derivatives 1b, 3b, 3e, 3h and 3p. The activity of these compounds was decreased by elongation of the alkyl chain in R² alkyl substituted derivatives probably due to steric hindrance or to a change in the lipophilicity of compounds. Furthermore, R¹ bromine substituted compounds 3m, 3p, 3s and 3v were less active than 3b, 3e, 3h and 1b which were unsubstituted possibly because of inductive effect of the bromine. In R³ chlorine substituted derivatives, the activity was generally increased by elongation of the alkyl chain and R¹-bromine substitution whereas R² butyl and cyclohexyl substituted compounds 3f and 3i were more

Table 3: Primary antituberculosis activity screen results of 3a-v^{a)}.

Comp.	MIC (µg/ml)	Inhibition (%)
3a	> 12.5	24
3b	< 12.5	97
3c	> 12.5	36
3d	> 12.5	83
3e	< 12.5	96
3f	> 12.5	81
3g	> 12.5	3
3h	< 12.5	94
3i	> 12.5	75
3j	> 12.5	83
3k	> 12.5	63
3l	> 12.5	81
3m	> 12.5	86
3n	> 12.5	71
3o	> 12.5	91
3p	> 12.5	91
3q	> 12.5	71
3r	> 12.5	—
3s	> 12.5	69
3t	> 12.5	40
3u	> 12.5	20
3v	> 12.5	89

a) MIC of rifampicin: 0.125 µg/ml, 97 % inhibition.

Table 4: Level II antituberculosis activity assay results of 1b, 3b, 3e, 3h, 3o, and 3p.

Compound	Assay	MIC (µg/ml)	Rifampicin MIC (µg/ml)
1b	MABA	6.25	0.06
	CABTEC	12.5	0.5
3b	CABTEC	> 12.5	0.125
3e	CABTEC	> 12.5	0.125
3h	CABTEC	12.5	0.125
3o	CABTEC	> 12.5	0.125
3p	MABA	> 12.5	0.03

active than 3q and 3t with R¹bromine substitution. Among R³ 2-hydroxy and 5-bromine substituted derivatives, the R² ethyl, allyl and cyclohexyl substituted compounds 1a, 3d and 3j showed 83 % inhibition in the primary screen. The activity was decreased by R¹ bromine substitution in the R² ethyl and cyclohexyl substituted compounds (3l and 3u) whereas R¹ bromine and R² allyl substituted compound 3o exhibited 91 % inhibition. Moreover R² butyl substituted compounds 3g and 3r were inactive against *M. tuberculosis* H37Rv.

These preliminary results show that the most active compound was R² cyclohexyl and R³ 3-ethoxy and 4-hydroxy substituted derivative 1b. Nevertheless, all of the R³ 3-ethoxy and 4-hydroxy substituted compounds showed > 90 % inhibition in the primary screen. The activity of all the compounds tested was generally decreased by R¹ bromine substitution whereas R¹ bromine and R³ chlorine substituted compounds were more active than other entries without R¹ bromine substitution. The increase in the antituberculosis activity may be related to a change in the lipophilicity of the compounds.

4. References

- [1] Stahman, M. A., Huebner, C. F., Link, K. P., J. Biol. Chem. **138**, 513 (1941)
- [2] Kawa, M. I., Stahmann, M. A., Link, K. P., J. Amer. Chem. Soc. **66**, 902 (1944)
- [3] Jindal, M. N., Shah, D. S., Arzneim.-Forsch./Drug Res. **16**, 878 (1966)
- [4] Nitz, R. E., Pötzsch, E., Arzneim.-Forsch./Drug Res. **13**, 243 (1963)
- [5] Blumberg, H., Schlesinger, A., Gordon, S. M., J. Pharmacol. Exp. Ther. **105**, 336 (1952)
- [6] Mitscher, L. A., in: Principles of Medicinal Chemistry, 4th ed., W. O. T. Foye, L. Lemke, D. A. Williams (eds.), p. 800, Williams & Wilkins, Baltimore (1995)
- [7] Taniyama, H., Tanaka, Y., Uchida, H., J. Pharm. Soc. Japan **74**, 370 (1954)
- [8] Habib, N. S., Khalil, M. A., J. Pharm. Sci. **73**, 982 (1984)
- [9] Gürsoy, A., Ateş, Ö., J. Fac. Pharm. Istanbul **14**, 93 (1978)
- [10] Gürsoy, A., Karalı, N., Ötük, G., Acta Pharm. Turc. **34**, 9 (1992)
- [11] Karalı, N., Terzioğlu, N., Gürsoy, A. et al., Boll. Chim. Farm. **137**, 63 (1998)
- [12] Karalı, N., Terzioğlu, N., Gürsoy, A., Arzneim.-Forsch./Drug Res. **48 (II)**, 758 (1998)
- [13] Beyer, H., Lässig, W., Bulka, E., Ber. **87**, 1385 (1954)
- [14] McLean, J., Wilson, F. J., J. Chem. Soc. 556 (1937)
- [15] Beyer, H., Höhn, H., Lässig, W., Ber. **85**, 1122 (1952)
- [16] Sahu, M., Garnaik, B. K., Behera, R. K., Indian J. Chem. Sect. B **26**, 779 (1987)
- [17] Böhme, H., Severin, T., Arch. Pharm. (Weinheim) **285** (1957)
- [18] Sélim, M., Sélim, M., Tétu, O. et al., Bull. Soc. Chim. Fr. 3527 (1965)
- [19] Czerney, P., Hartmann, H., J. Prakt. Chem. **324**, 255 (1982)
- [20] Bonsignore, L., Cabiddu, S., Loy, G. et al., Chem. Heterocycl. **22**, 2587 (1984)
- [21] Omar, A.-M. M. E., Eshba, N. H., Salama, H. M., Arch. Pharm. (Weinheim) **317**, 701 (1984)
- [22] Habib, N. S., Khalil, M. A., J. Pharm. Sci. **73**, 982 (1984)
- [23] Nathan, P. J., Dominguez, M., Ortega, D. A., J. Heterocycl. Chem. **21**, 1141 (1984)
- [24] Kingston, D. G. I., Tannenbaum, H. P., Baker, G. B., J. Chem. Soc. (C) 2574 (1970)
- [25] Voigt, D., Schmidt, J., Schreiber, K., J. Prakt. Chem. **319**, 767 (1977)
- [26] Clarke, G. M., Grigg, R., Williams, D. H., J. Chem. Soc. (B) 339 (1966)
- [27] Inderleid, C. B., in: Antibiotics in Laboratory Medicine, 3rd ed., V. Lorian (ed.), p. 134, Williams & Wilkins, Baltimore (1991)

Acknowledgements

We thank D. Joseph A. Maddry from the Tuberculosis Antimicrobial Acquisition and Coordinating Facility (TAACF), National Institute of Allergy and Infectious Diseases Southern Research Institute, GWL Hansen's Disease Center, Colorado State University, Birmingham, Alabama (USA) for the in vitro evaluation of antituberculosis activity.

Correspondence: Dr. Nilgün Karalı, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Istanbul, 34452 Beyazit-Istanbul (Turkey)
E-mail: nilgunkarali@yahoo.com