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ABSTRACT 
 

Zararsız, G. Development and Application of Novel Machine Learning Approaches for 
RNA-Seq Data Classification. Hacettepe University Institute of Health Sciences, Ph.D. 
Thesis in Biostatistics, Ankara, 2015. RNA-Seq is a recent and efficient technique that uses 
the capabilities of next-generation sequencing technology in characterizing and quantifying 
transcriptomes. This technique has revolutionized the gene-expression profiling with major 
advantages over microarrays: (i) providing less noisy data, (ii) detecting novel transcripts 
and isoforms, and (iii) unnecessity of prearranged transcripts of interest. One important task 
using gene-expression data is to identify a small subset of genes and classify the data for 
diagnostic purposes, particularly for cancer diseases. Microarray based classifiers are not 
directly applicable due to the discrete nature of RNA-Seq data. Overdispersion is another 
problem that requires careful modeling of mean and variance relationship of the RNA-Seq 
data. Voom is a recent method that estimates the mean and variance relationship of the log-
counts and provides precision weights for each observation to be used for further analysis. In 
this study, we developed VoomNSC method, which brings together voom and a powerful 
microarray classifier nearest shrunken centroids approaches for the purpose of “gene-
expression based classification”. VoomNSC is a sparse classifier that models the mean and 
variance relationship using voom method, incorporates the outputs of voom method (i.e. log-
cpm values and precision weights) into NSC using weighted statistics. We also provided two 
non-sparse classifiers voomDLDA and voomDQDA, the extensions of diagonal linear and 
quadratic discriminant classifiers for RNA-Seq classification. A comprehensive simulation 
study is designed and four real datasets are used to assess the performance of developed 
approaches. Results revealed that voomNSC method performs as the sparsest classifier, also 
provides the most accurate results with power transformed Poisson linear discriminant 
analysis, and rlog transformed support vector machines and random forests algorithms. In 
conclusion, voomNSC is a fast, accurate and sparse classifier that can successfully be 
applied for diagnostic biomarker discovery and classification problems in medicine. This 
algorithm can also be used in other transcriptomics studies, such as separating developmental 
differences, cellular responses against stressors, or diverse phenotypes. An interactive web 
application is freely available at http://www.biosoft.hacettepe.edu.tr/voomDDA/ . 
 
Keywords: Diagonal covariance matrix, discriminant analysis, gene expression, nearest 
shrunken centroids, next generation sequencing, RNA sequencing, voom, weighted statistic. 
 
Supported by Research Fund of the Erciyes University, Ph. D. Thesis Grant  
(TDK-2015-5468). 
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ÖZET 
 

Zararsız, G. RNA Dizileme Verilerinin Sınıflandırılmasında Yeni Makine Öğrenimi 
Yaklaşımlarının Geliştirilmesi ve Uygulanması. Hacettepe Üniversitesi, Sağlık Bilimleri 
Enstitüsü, Biyoistatistik Programı Doktora Tezi, Ankara, 2015. RNA dizileme, 
transkriptom karakterizasyonu ve nicelleştirmesinde yeni nesil dizileme teknolojisinin 
imkânlarını kullanan güncel ve etkin bir tekniktir. Bu teknik mikrodizin teknolojisine olan 
önemli avantajları ile gen ifadesi profillemesinde önemli gelişmeler kaydetmiştir: (i) daha az 
tutarsız veri üretme, (ii) yeni transkript ve izoformalarını tespit edebilme ve (iii) ilgilenilen 
transkriptler için ön hazırlık gerektirmeme. Gen ifadesi verisi kullanılarak yapılan önemli 
işlemlerden biri genlerin küçük bir alt setinin belirlenmesi ve özellikle kanser hastalıklarında 
tanı amaçlı verinin sınıflandırılmasıdır. RNA dizileme verilerinin kesikli veri yapısından 
dolayı, mikrodizin temelli sınıflandırıcılar doğrudan kullanılamamaktadır. Aşırı yaygınlık 
diğer bir problem olup, RNA dizileme verisinin ortalama ve varyans ilişkisinin dikkatli 
modellemesini gerektirmektedir. Voom, log-sayma değerlerinin ortalama ve varyans 
ilişkisini tahmin eden ve izleyen analizlerde kullanılmak üzere her gözlem için ağırlık 
katsayıları üreten güncel bir yöntemdir. Bu çalışmada biz güçlü bir mikrodizin 
sınıflandırıcısı olan en yakın küçültülmüş merkezler ve voom yaklaşımlarını bir araya getiren 
voomNSC yöntemini geliştirdik. VoomNSC ortalama ve varyans ilişkisini voom yöntemi ile 
modelleyen, voom yöntemi çıktılarını (log-cpm değerleri ve ağırlık katsayıları) 
ağırlıklandırılmış istatistikler kullanarak en yakın küçültülmüş merkezler yöntemine dâhil 
eden spars bir sınıflandırıcıdır. Ayrıca biz köşegenel doğrusal ve karesel ayırma analizlerinin 
RNA dizileme sınıflandırmasındaki uyarlamaları olan voomDLDA ve voomDQDA spars 
olmayan sınıflandırıcılarını da sağladık. Geliştirilen yaklaşımların performanslarının 
değerlendirilmesi için kapsamlı bir benzetim çalışması tasarladık ve dört adet gerçek veri seti 
kullandık. Bulgular, voomNSC yönteminin en spars sınıflandırıcı olduğunu, ayrıca üs 
dönüşümü uygulanmış Poisson doğrusal ayırma analizi, ve rlog dönüşümü uygulanmış 
destek vektör makineleri ve random forests yöntemleri ile birlikte en doğru sonuçları 
ürettiğini göstermiştir. Sonuç olarak, voomNSC, tıp alanında tanı biyobelirteçlerinin tespiti 
ve sınıflandırılma probleminde başarıyla uygulanabilir hızlı, tutarlı ve spars bir 
sınıflandırıcıdır. Ayrıca, bu algoritma gelişim farklılıklarının ayırt edilmesi, stres ajanlarına 
karşı hücresel yanıtın tespiti gibi çeşitli fenotiplerin ayrımında da kullanılabilir. İnteraktif 
web uygulamasına http://www.biosoft.hacettepe.edu.tr/voomDDA/ adresinden ücretsiz 
olarak ulaşılabilir.  
 
Anahtar Kelimeler: Ağırlıklandırılmış istatistik, ayırma analizi, en yakın küçültülmüş 
merkezler, gen ifadesi, köşegenel kovaryans matrisi, RNA dizileme, yeni nesil dizileme, 
voom. 
 
Erciyes Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimince Desteklenmiştir. 
Doktora Tezi Projesi (TDK-2015-5468) 

http://www.biosoft.hacettepe.edu.tr/voomDDA/


vii 
 

INDEX 

 Page 

Approval page iii 

Teşekkür iv 

Abstract v 

Özet vi 

Index vii 

Symbols and Abbreviations Index ix 

Figures Index xii 

Tables Index xiv 

1.INTRODUCTION 1 

1.1.Problem Overview 1 

1.2.Contribution 6 

1.3.Organization of This Thesis 6 

2.GENERAL INFORMATION 8 

2.1.Machine Learning and Gene-Expression Based Classification 8 

2.2.Next-Generation Sequencing 10 

2.3.RNA-Sequencing 14 

2.4.RNA-Sequencing Data Analysis Workflow 15 

2.5.RNA-Sequencing Data 18 

 2.5.1.Notations 18 

 2.5.2.Discrete Models 19 

 2.5.3.Normalization 22 

 2.5.4.Transformation 24 

2.6.Linear and Quadratic Discriminant Analysis 28 

2.7.Diagonal Linear and Quadratic Discriminant Analysis 29 

2.8.Nearest Shrunken Centroids 30 

2.9.Poisson Linear Discriminant Analysis 34 

2.10.Negative-Binomial Linear Discriminant Analysis 35 

2.11.MLSeq Software for RNA-Seq Classification 36 

3.MATERIAL and METHODS 38 

3.1.VoomDDA Classifiers 38 



viii 
 

 3.1.1.Calculation of Log-Cpm Values and Estimation of Precision Weights 38 

 3.1.2.Classification Models Based on Diagonal Weighted Sample              

Covariance Matrices 

40 

 3.1.3.Prediction of Test Observations for VoomDLDA and VoomDQDA 

Classifiers  

40 

 3.1.4.Sparse VoomNSC Classifier for RNA-Seq Classification 42 

 3.1.5.Selection of the Optimal Threshold Parameter (λ) 44 

 3.1.6.Prediction of Test Observations for VoomNSC Classifier 45 

3.2.Implementation of Classifiers 46 

3.3.Evaluation of VoomDDA Classifiers 48 

 3.3.1.Simulation Study 48 

 3.3.2.Application to Real RNA-Sequencing Datasets 52 

 3.3.3.Evaluation Criteria 54 

 3.3.4.Computational Infrastructure and Parallel Programming 55 

3.4.Development of a Web-Based Platform 56 

4.RESULTS 58 

4.1.Simulation Results 58 

4.2.Real Dataset Results 96 

4.3.Computational Cost of Classifiers 100 

4.4.VoomNSC Classifiers in Diagnostic Biomarker Discovery Problems 100 

5.DISCUSSION 105 

6.CONCLUSION 109 

REFERENCES 111 

SUPPLEMENTARY MATERIAL  

Supplementary File 1: User Guide Of VoomDDA Web Application  

Supplementary File 2: All results for simulation and real datasets (CD)  

Supplementary File 3: Analysis codes (CD)  

Supplementary File 4: Web application files (CD)  

Supplementary File 5: Figures in high-quality formats (CD) 

 

 

 

 



ix 
 

SYMBOLS and ABBREVIATIONS 

 

ADAS-Cog Alzheimer Disease Assessment Scale-Cognitive Subscale 

ALL Acute Lymphoblastic Leukemia 

AML Acute Myeloid Leukemia 

ASCII American Standard Code for Information Interchange 

BWA Burrows-Wheeler Aligner 

CART Classification and Regression Trees 

CDR Clinical Dementia Rating 

ChIP-Seq Chromatin Immunoprecipitation Followed by Sequencing 

DLDA Diagonal Linear Discriminant Analysis 

DNA Deoxyribonucleic Acid 

DNA-Seq DNA Sequencing 

DNase-seq DNAse I Hypersensitive Site Sequencing 

DQDA Diagonal Quadratic Discriminant Analysis 

FAIRE-Seq Formaldehyde-Assisted Isolation of Regulatory Elements Followed 

by Sequencing 

FN False Negative 

FP False Positive 

Indel Insersion or the Deletion of the Bases 

GC Content Guanine-Cytosine Content 

KICH Kidney Chromophobe Carcinomas 

KIRC Kidney Renal Clear Cell 

KIRP Kidney Renal Papillary Cell 

KNN K-Nearest Neighbors 

Lasso Least Absolute Shrinkage and Selection Operator 

LDA Linear Discriminant Analysis 

Limma Linear Models for Microarray and RNA-Seq Data 

lncRNA Long Non-Coding RNA 

Log-Cpm Log Counts per Million 

LOWESS Locally Weighted Scatter Plot Smoothing 

LUAD Lung Adenocarcinoma 



x 
 

LUSC Lung Squamous Cell with Carcinoma 

miRNA Micro RNA 

MLE Maximum Likelihood Estimation 

MMSE Mini-Mental State Exam 

MNase-Seq Micrococcal Nuclease Digestion Followed by Sequencing 

mRNA Messenger RNA 

NGS Next Generation Sequencing 

NB Negative Binomial 

NBLDA Negative Binomial Linear Discriminant Analysis 

NSC Nearest Shrunken Centroids 

PCR Polymerase Chain Reaction 

PLDA Poisson Linear Discriminant Analysis 

QDA Quadratic Discriminant Analysis 

RCC Renal Cell Cancer 

Rlog Regularized Logarithmic Transformation 

RNA Ribonucleic Acid 

RNA-Seq Transcriptome Sequencing or RNA Sequencing 

RF Random Forests 

RPKM Reads per Kilobase per Million Mapped Reads 

SAM Significance Analysis of Microarrays 

SBS Sequence-by-Synthesis 

SNP Single Nucleotide Polymorphism 

SVM Support Vector Machines 

TC Total Count 

TCGA The Cancer Genome Atlas 

TMM Trimmed Mean of M-Values 

TN True Negative 

TP True Positive 

UQ Upper Quartile 

Voom Variance Modeling at the Observational Level 

VoomDDA Voom Based Diagonal Discriminant Analysis 

VoomDLDA Voom Based Diagonal Linear Discriminant Analysis 



xi 
 

VoomDQDA Voom Based Diagonal Quadratic Discriminant Analysis 

VoomNSC Voom Based Nearest Shrunken Centroids 

Vst Variance Stabilizing Transformation 

WMS Wechsler Memory Scale 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xii 
 

 FIGURES 

  Page 

2.1. Illumina (Solexa) sequencing workflow. (A) DNA or cDNA sample 

preparation for sequencing, (B) Bridge amplification and cluster 

generation of adapter ligated DNA fragments, (C) Sequencing by 

synthesis and imaging 

13 

2.2. Voom mean-variance modeling for cervical data 27 

2.3. Optimization of shrinkage parameter in colon cancer microarray data 32 

2.4. Shrunken centroids for the  colon cancer microarray data 33 

2.5. Gene expression level distributions of selected 15 genes in  colon 

cancer microarray data 

33 

2.6. A screenshot of MLSeq package in R/BIOCONDUCTOR network 37 

3.1. A flowchart of the steps of voomNSC algorithm 43 

3.2. Selection of voomNSC threshold parameter for cervical data 45 

3.3. Simulation design and the evaluation process 50 

4.1. Accuracy results for the simulation scenario K=2, egk=1%, σ=0.1 59 

4.2. Sparsity results for the simulation scenario K=2, egk=1%, σ=0.1 60 

4.3. Accuracy results for the simulation scenario K=2, egk=5%, σ=0.1 61 

4.4. Sparsity results for the simulation scenario K=2, egk=5%, σ=0.1 62 

4.5. Accuracy results for the simulation scenario K=2, egk=10%, σ=0.1 63 

4.6. Sparsity results for the simulation scenario K=2, egk=10%, σ=0.1 64 

4.7. Accuracy results for the simulation scenario K=3, egk=1%, σ=0.1 65 

4.8. Sparsity results for the simulation scenario K=3, egk=1%, σ=0.1 66 

4.9. Accuracy results for the simulation scenario K=3, egk=5%, σ=0.1 67 

4.10. Sparsity results for the simulation scenario K=3, egk=5%, σ=0.1 68 

4.11. Accuracy results for the simulation scenario K=3, egk=10%, σ=0.1 69 

4.12. Sparsity results for the simulation scenario K=3, egk=10%, σ=0.1 70 

4.13. Accuracy results for the simulation scenario K=4, egk=1%, σ=0.1 71 

4.14. Sparsity results for the simulation scenario K=4, egk=1%, σ=0.1 72 

4.15. Accuracy results for the simulation scenario K=4, egk=5%, σ=0.1 73 

4.16. Sparsity results for the simulation scenario K=4, egk=5%, σ=0.1 74 

4.17. Accuracy results for the simulation scenario K=4, egk=10%, σ=0.1 75 



xiii 
 

4.18. Sparsity results for the simulation scenario K=4, egk=10%, σ=0.1 76 

4.19. Accuracy results for the simulation scenario K=2, egk=1%, σ=0.2 77 

4.20. Sparsity results for the simulation scenario K=2, egk=1%, σ=0.2 78 

4.21. Accuracy results for the simulation scenario K=2, egk=5%, σ=0.2 79 

4.22. Sparsity results for the simulation scenario K=2, egk=5%, σ=0.2 80 

4.23. Accuracy results for the simulation scenario K=2, egk=10%, σ=0.2 81 

4.24. Sparsity results for the simulation scenario K=2, egk=10%, σ=0.2 82 

4.25. Accuracy results for the simulation scenario K=3, egk=1%, σ=0.2 83 

4.26. Sparsity results for the simulation scenario K=3, egk=1%, σ=0.2 84 

4.27. Accuracy results for the simulation scenario K=3, egk=5%, σ=0.2 85 

4.28. Sparsity results for the simulation scenario K=3, egk=5%, σ=0.2 86 

4.29. Accuracy results for the simulation scenario K=3, egk=10%, σ=0.2 87 

4.30. Sparsity results for the simulation scenario K=3, egk=10%, σ=0.2 88 

4.31. Accuracy results for the simulation scenario K=4, egk=1%, σ=0.2 89 

4.32. Sparsity results for the simulation scenario K=4, egk=1%, σ=0.2 90 

4.33. Accuracy results for the simulation scenario K=4, egk=5%, σ=0.2 91 

4.34. Sparsity results for the simulation scenario K=4, egk=5%, σ=0.2 92 

4.35. Accuracy results for the simulation scenario K=4, egk=10%, σ=0.2 93 

4.36. Sparsity results for the simulation scenario K=4, egk=10%, σ=0.2 94 

4.37. Principal component analysis plots for each dataset 97 

4.38. Distribution of dispersion statistics for each dataset 97 

4.39. Heatmap plot for the selected miRNAs in cervical dataset 103 

4.40. Heatmap plot for the selected miRNAs in alzheimer dataset 103 

4.41. Heatmap plot for the selected genes in lung cancer dataset 103 

4.42. Heatmap plot for the selected genes in renal cell cancer dataset 104 

5.1. A Venn-diagram displaying the number of selected miRNAs from 

voomNSC algorithm and Witten et al. 

108 

 

 

 

 

 



xiv 
 

 TABLES 

  Page 

2.1. Properties of various next-generation sequencing platforms 12 

2.2. An example count data matrix format for p genes, n samples and K 

classes. 

20 

3.1. Confusion matrix for a classification model 54 

3.2. Computational properties of the used workstations in analysis 56 

4.1. Accuracy results of classifiers for real datasets 99 

4.2. Sparsity results of classifiers for real datasets 99 

4.3. Computational costs of classifiers for real datasets 101 

4.4. Summary of voomNSC models and selected genes in real datasets 102 

 



1 
 

 

 
 

1. INTRODUCTION 

1.1. Problem Overview 

In molecular biological studies, gene-expression profiling is among the most widely 

applied genomic technique to understand the role and the molecular mechanism of 

particular genes in interested conditions (1). Recent high-throughput technologies 

allow researchers to quantify the expression levels of thousands of genes 

simultaneously.  

 During the last seventeen years or more, microarray technology was very 

popular in gene expression profiling. Although microarray technology has high-

throughput abilities, it has two major drawbacks (2): 

1. Cross-hybridization1 may occur and increase the noise of data,  

2. Only prearranged transcripts can be measured on the array, thus novel 

transcripts cannot be detected. 

 With the recent developments in molecular biology, next-generation 

sequencing (NGS) has become the premier technology and preferred approach for –

omics studies, including genomics, transcriptomics, epigenomics, metagenomics, etc. 

Transcriptome sequencing (RNA-Seq) benefits from the capabilities of NGS and is a 

powerful technique for examining comprehensive catalog of protein-coding and non-

coding RNAs, and investigating the transcriptional activity of genomes (Wang et al., 

2009). With diverse range of applications, RNA-Seq has already proved itself as a 

promising tool; (i) discovering novel transcripts, (ii) detecting and quantifying 

spliced isoforms, (iii) detecting fusions2, (iv) detecting sequence variations (e.g, 

SNPs, indels). Beyond these applications, RNA-Seq is widely and effectively being 

used in gene expression studies due to some advantages over microarrays: (i) 

providing less noisy data, (ii) detecting novel transcripts and isoforms, and (iii) 

unnecessity of prearranged transcripts of interest. These advantages lead RNA-Seq 

technology to replace microarrays as the technology of choice and become the de 

facto standard in gene-expression studies (3). 

 Identifying the relevant genes across the conditions (e.g. tumor and non-

tumor tissue samples) is a common research interest in gene-expression studies. In 

this gene selection, researchers are often interested in one of the following objectives 

(4): 

 

1Mismatch of a DNA probe to a DNA molecule. 
2A hybrid form of two distinct genes. 
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i. to detect a large set of differentially expressed genes that are related 

with the condition and apply further analysis to investigate their 

molecular roles to understand their association with the condition, 

ii. to detect a small set of genes for diagnostic purpose in medicine that 

involves the identification of the minimal subset of genes that 

achieves maximal predictive performance. 

 This thesis focuses here on the second objective, which refers to the 

‘classification analysis’ in statistical terminology. Classification analysis has great 

importance in gene-expression studies and used especially in medicine field to 

develop decision support systems for molecular diagnosis of diseases. The task is to 

classify and predict whether an individual has a disease (or a specific type of disease, 

e.g. subtype) or not based on the gene expression profile of biopsy or serum sample 

(5).  

 A particular interest of gene-expression based classification is the cancer 

classification problem. Traditional diagnosis is based on the morphological 

appearances of tissues under the light microscope and is subjective. The successful 

diagnosis of cancer is highly associated with the expertise of pathologists. High-

throughput gene expression technologies provide objective and accurate solutions to 

assist and support clinicians in their decision (6). Apart from the disease diagnosis, 

this classification task can be used in other transcriptomics studies to separate 

developmental differences, cellular responses against stressors, or diverse 

phenotypes (3).  

 In order to make a successful classification based on the gene-expression 

profiles, powerful statistical algorithms are highly required. These algorithms should 

be able to cope with the high-throughput abilities of the recent technologies, identify 

the best minimal subset of genes and predict the condition categories accurately. 

Since, the number of genes (mostly in thousands) is much higher than the number of 

samples (mostly in tens to hundreds), curse of dimensionality3 problem arises and the 

classical statistical algorithms do not work in this condition. 

  In microarrays, a great deal of machine learning algorithms is proposed and 

applied for the purpose of gene-expression based classification. Brown et al. (7) 

adapted support vector machines (SVM) algorithm for microarray classification and 

 

3A problem that exists when an algorithm is not capable to scale with the high-dimension property 
of data. 
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showed its performance on yeast data. Dudoit et al. (8) derived discriminant analysis 

work with high-dimensional data with two of its extensions: (i) diagonal linear 

discriminant analysis (DLDA), (ii) diagonal quadratic discriminant analysis 

(DQDA). The authors compared the performance of these and several other 

classification algorithms in three real datasets. Tibshirani et al. (6) proposed a 

powerful approach, nearest shrunken centroids classifier, which determines the best 

subset of genes and classifies the data. The authors showed the effectiveness of the 

algorithm in two real datasets, developed software as well for the applicability of the 

proposed algorithm. Díaz-Uriarte et al. (4) evaluated the random forest (RF) 

algorithm for gene selection and classification purpose. The authors simulated data, 

also used 9 real datasets and found that their approach yields less number of genes 

than k-nearest neighbors (KNN), DLDA and SVM approaches while preserving the 

classification accuracy. Rapaport et al. (9) integrated a priori knowledge of a gene 

network and obtained both accurate and more interpretable classification results. 

Many other studies can be found from a simple ‘PubMed’ or ‘ScienceDirect’ 

searches with the following keyword: ‘microarray classification’. 

 These algorithms cannot be directly applied to RNA-Seq data, since the type 

of the data is totally different. Albeit the continuous data format of microarrays, 

RNA-Seq data is summarized with nonnegative and integer-valued counts which 

exist from the number of mapped sequencing reads to genomic regions of interested 

specie. These mapped read counts are found to be correlated with the abundance of 

the target transcript (10). Since the data types are different, algorithms developed for 

microarrays are not directly applicable for RNA-Seq based gene-expression 

classification. 

 In the past few years, much effort was invested in modeling RNA-Seq data 

for differential expression analysis. Earlier studies applied microarray based methods 

after normalizing and taking the logarithm of counts (11-14). Later publications 

analyzed RNA-Seq data with specific methods designed for counts. Several Poisson 

distribution based statistical methods have been used for differential expression 

analysis (15-17). However, this distribution has a single parameter (λ) stands for both 

mean and variance; hence there is no need to estimate the variance. When we have 

only technical replicates, which means we have just one individual with technical 
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steps replicated, Poisson distribution based methods may be applicable. However, 

Nagalakshmi et al. (18) reported that the variance exceeds the mean if biological 

replicates (multiple individuals) are available in RNA-Seq data. This problem refers 

to overdispersion problem. To make an inference to the population and obtain more 

convincing results, biological replicates should be used. Thus, Poisson based 

methods are inapplicable and more care must be taken to model RNA-Seq data by 

considering the overdispersion problem (10). Much interest has been given to 

negative binomial (NB) distribution to overcome this problem. This distribution has 

two parameters uniquely determined by mean and variance. DESeq and edgeR are 

the two widely used powerful NB based approaches to model RNA-Seq data. Since 

the number of replicates in RNA-Seq data is usually small, these methods model the 

counts by estimating the mean and variance relationship. edgeR method uses a single 

proportionality constant, while DESeq applied local regression in this estimation 

(10,19). 

 Recently, variance modeling at the observational level (voom) method is 

proposed to open access microarray based methods for RNA-Seq analysis. Voom 

estimates the mean and variance relationship from the log counts and provides 

precision weights for downstream analysis. This method is integrated with limma 

(linear models for microarray and RNA-Seq data) method (20) and showed the best 

performance as compared to count based methods in controlling the type-I error rate, 

having the best power and lowest false discovery rate. Voom has various advantages 

than other methods: (i) observed mean-variance relationship matches more perfectly 

to theoretical mean-variance relationship after voom transformation, (ii) mean-

variance trend is more precise, mostly for different RNA samples with different 

sequence depths, (iii) gives access to make use of empirical Bayes estimation theory, 

(iv) voom transformed normal distributed data with variance modeling partly 

supported by generalized linear model theory, (v) faster (1). The advantages of voom 

method and its well coordination with limma method in differential expression 

analysis point out to high performance results also for the other analysis types such 

as classification and clustering. 

 For the classification purpose, there is still less advancements for RNA-Seq 

data until recently. Witten proposed Poisson linear discriminant analysis classifier 
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(PLDA), which is an extension of Fisher’s linear discriminant analysis to high-

dimensional count data. PLDA shrinks the class differences to identify a subset of 

genes, and apply Poisson log linear model for classification (2). Dong et al. (5) 

extended this algorithm to build a new classification method based on NB 

distribution. The authors used a shrinkage method to predict the additional 

overdispersion parameter. 

 Law et al. (1) mentions that the count-based statistical methodology, such as 

differential expression is limited as compared to microarrays. This is also same for 

classification analysis. Even a wide range of algorithms are presented for microarray 

technology, this progress is very slow due to the type of the RNA-Seq data. This 

technological exchange may outdate most of the microarray classification methods 

that are based on normal distribution. Moreover, the mathematical theories of 

Poisson and NB distributions are not practicable as the normal distribution (1). 

Overdispersion problem is the main issue, which may have significant effect on 

classification accuracies. Poisson linear discriminant analysis (PLDA) algorithm is 

not capable to deal with this problem on its own. To overcome this, Witten et al. (2) 

applied a power transformation to stabilize the variance of genes and make the mean 

and variance relationship linear. However, the power transformation does not 

guarantee to account for the overdispersion. Since, there may be a trade-off between 

linearity and homoscedasticity4. This trade-off may limit the use of simple 

transformations in providing optimal results for both. Negative-binomial linear 

discriminant analysis (NBLDA) is a recent method, which uses a shrinkage estimator 

to predict the overdispersion parameter (21). This algorithm treats the estimated 

dispersion as a known parameter of asymptotic NB distribution and does not allow 

for the uncertainty of estimation. An imprecise dispersion estimate may be biased, 

which may lead NBLDA to give overly liberal results and directly affect the 

classification results.  

 Another solution may be to transform the data into continuous format in order 

to make the RNA-Seq data hierarchically closer to microarray data and make use of 

the flexibility of normal distribution. Zararsız et al. (3) transformed the data using 

variance stabilizing transformation (vst) and applied several machine learning 

algorithms including single SVM, bagging SVM, random forest, classification and 

 

4A statistical assumption referring to the equality of variance across the predictor variables. 
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regression trees (CART) and PLDA. The authors developed MLSeq 

R/BIOCONDUCTOR package (22) to make computation less complicated for 

researchers and allow one to fit a model using the mentioned algorithms with one 

single function. These simple transformations (e.g. logarithmic and vst) have the 

limitation of obtaining less extreme values but still have unequal variances (23). If 

transformation is the strategy of choice in classification, one should use an 

appropriate transformation method that correctly models the mean and variance 

relationship of data, which is mentioned to be more important than specifying the 

exact probability distribution of counts (1). After transformation, powerful statistical 

algorithms are strongly required due to the small sample size settings. 

 

1.2. Contribution  

In this thesis, we present a sparse classifier voomNSC that brings together two 

powerful methods, voom method and nearest shrunken centroids algorithm, for the 

classification of RNA-Seq data. Basicly, voomNSC accepts either a normalized or 

non-normalized count data as input, applies voom method to data and provides 

precision weights for each observation, fits a NSC classifier by taking account of 

these weights. Thus, the main objective of proposing this approach is twofold: 

1. to extend voom method for RNA-Seq classification studies, 

2. to make NSC algorithm available for RNA-Seq technology, 

 Using voom method, we also made available the diagonal discriminant 

classifiers able to work with RNA-Seq data. Two diagonal RNA-Seq discriminant 

classifiers, voomDLDA and voomDQDA, will also be presented within the scope of 

this thesis.  

 

1.3. Organization of This Thesis 

We organized the rest of this thesis as follows. We detail the RNA-Sequencing in 

both the technological and the methodological view in 'General Information' section. 

We describe the bioinformatics analysis workflow, with important aspects and the 

commonly used methods and tools in each step. Here, we give a particular interest to 

normalization and transformation methods, which are crucial for statistical analysis 

of RNA-Seq data (i.e. differential expression, classification, clustering, etc.). We 
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describe how PLDA and NBLDA algorithms work in RNA-Sequencing based 

classification. We will also mention about low and high dimensional discriminant 

analysis approaches that underpin the basis of developed algorithms. In 'Material and 

Methods' section, we present the underlying theory of voomDDA classifiers (i.e. 

voomNSC, voomDLDA and voomDQDA). A comprehensive simulation study is 

designed for performance assessment. Four real studies are also used to illustrate the 

use of the proposed approaches. We discuss the details of these datasets and the 

evaluation process of voomDDA classifiers and other compared algorithms. In 

'Results' section, we give the results of simulation and real dataset results. We 

discuss and conclude our study in 'Discussion' and 'Conclusion' sections. Illustration 

of voomDDA web application is given in the Supplementary section. 
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2. GENERAL INFORMATION 

2.1. Machine Learning and Gene-Expression Based Classification 

Machine learning (or statistical learning) is a subfield of statistics and computer 

science. It is concerned with the construction of computer algorithms that enables 

computers to assist humans make data-driven predictions and enhance with 

experience. The huge amount of data provided by the recent genetics technologies, 

such as microarrays and NGS, increased the use of these algorithms. These advances 

led machine-learning to be applied in various fields in genomics. These fields include 

DNA sequencing (DNA-Seq), RNA-Seq, small RNA-Seq, DNAse I hypersensitive 

site sequencing (DNase-seq), chromatin immunoprecipitation followed by 

sequencing (ChIP-Seq), formaldehyde-assisted isolation of regulatory elements 

followed by sequencing (FAIRE-Seq), micrococcal nuclease digestion followed by 

sequencing (MNase-Seq) and metagenome sequencing. Several examples of 

machine-learning applications in these genomics fields are as follows: (i) 

identification the location of transcription factor binding sites, alternative splicing 

sites, promoters, etc., (ii) classification of biological samples and prediction of 

clinical or other outcomes, (iii) detection of the functional annotations of genes, (iv) 

understanding the molecular mechanism of gene expression, (v) annotation of the 

genome and identification of novel functional classes, etc. (24). 

 Machine learning algorithms are mostly categorized into two parts: 

supervised and unsupervised learning. Supervised learning refers to training 

statistical models based on the labeled examples and make predictions based on the 

trained model to the unlabeled examples. Unsupervised learning algorithms do not 

require labels and aim to find patterns or structures in a dataset. In this thesis, we 

focus on the supervised learning category of machine learning in the application of 

gene-expression studies.  

 In gene-expression studies, researchers mostly collect samples from different 

conditions to identify the relevant genomic features and making predictions to in 

order to separate these conditions based on these features. These conditions may be 

the tumor classes (e.g. AML and ALL), tumor growth (e.g. growing and stable), 

treatment response (e.g. yes and no), survival status (e.g. surviving and exitus), 

pathogenic bacteria type (e.g. brucella and helicobacter), chemical compound type 
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(e.g. known and unknown), etc. Identification of the relevant genomic features, 

which may be genes, transcripts, micro RNAs (miRNAs5), etc., corresponds to 

biomarker discovery or feature selection problem, where the prediction of these 

conditions refers to the classification problem. The aim is mostly to get highly 

accurate predictions with the minimal subset of genomic features for separation of 

these conditions. 

 Using gene-expression data, both biomarker discovery and classification are 

crucial in medicine to assist physicians and other health professionals with decision 

making tasks, such as determining diagnosis of patient data. With the use of the 

capabilities of next-generation sequencing technology, detecting the most relevant 

genes (or exons, transcripts and isoforms) with an interested condition and 

developing a decision support system for clinical diagnosis will lead physicians to 

make more accurate diagnosis, develop and implement personalized, patient centered 

therapeutic interventions and improve the life quality of patients with better 

treatments. 

 A particular interest is the cancer classification problem. Current diagnostic 

approaches rely on the morphological appearance of tissue specimens, clinical and 

molecular variables. These methods have uncertainties in the diagnosis and 

subjective. For the same tissue specimen, there is not an obvious agreement among 

pathologists. Thus, the success of the diagnosis is highly dependent to the expertise 

of the pathologists. Gene-expression technologies and machine learning approaches 

make this classification objective, finer and more reliable. Since, expression levels of 

RNA are very dynamic, integrate both genetic and epigenetic information, and reflect 

the functional state of the cell. Because of its numerous advantages (detailed in 

Introduction section), RNA-Seq has been progressively becoming the standard 

technique in quantifying gene-expression. Therefore, RNA-Seq based discovery of 

biomarkers, and RNA-Seq based prediction of cancer classes (e.g. tumor type, tumor 

grade, chemotherapy type, recurrence, survival, etc.) will lead to the development of 

novel diagnostic methods, assays, even drugs (6,8,25,26). This will improve the 

management of cancer chemotherapy. With an accurate RNA-based diagnostic test 

(e.g. multigene expression assays6), it may be possible to detect the patients who are 

not responding to chemotherapy. Getting this information will guide oncologists on 

 

5A short form of RNA molecules in approximately 21-23 bp. These molecules are non-protein 
coding RNAs and have role in post transcriptional gene-expression regulation and RNA silencing. 
6Prognostic tests developed based on the expression profiles of multiple genes. 
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chemotherapy regimens, make them switch to alternative therapies, avoid the toxic 

side effects and improve the survival rate of patients. Besides increasing the survival 

probability, this kind of tests may improve the life-quality of patients by reducing the 

use of invasive tests such as the painful, sometimes life-threatening biopsy tests. 

 As well as messenger RNAs (mRNAs), non-coding RNAs play significant 

role on tumor progression and tumorigenesis. Again, these types of RNA molecules 

may be used for both disease diagnosis and monitoring of treatments. miRNAs have 

been used in detection of various types of cancers, such as colorectal cancer, 

pancreatic cancer, osteosarcoma and clear renal cell carcinoma. Discovering the 

miRNA biomarkers and using them for predictive purposes (e.g. via machine 

learning) have great potential in developing therapeutics. Since, miRNAs are short 

molecules and they have conserved known sequences among species. These 

properties make them challenging biomarkers for drug development (27). Apart from 

miRNAs, long non-coding RNAs7 (lncRNAs) are the new players in cancer 

detection. For instance, it has been shown that MVIH lncRNA has over-expression, 

while H19 has under-expression in hepatocellular carcinoma. CRNDE has been 

found as over-expressed in various cancer types including hepatocellular, pancreatic, 

colorectal, prostate, leukemia, ovarian and gliomas (28). Similarly to miRNAs, 

identifying the potential lncRNAs will lead to an early diagnosis, prognosis and more 

accurate and personalized treatment of cancer diseases. 

 Such classification systems can also be used in other applications as to 

identify the types of species, separate developmental differences, cellular responses 

against stressors, or diverse phenotypes in transcriptomics. 

 

2.2. Next-Generation Sequencing 

Basically, DNA sequencing is the process of determining the precise order of 

nucleotide bases in a DNA molecule. Until now, various approaches using different 

chemical techniques have been attempted to determine DNA sequence. With the 

recent rapid advancement in sequencing technologies, determining the DNA 

sequence of an organism's genome shifted from low-throughput Sanger sequencing 

to higher throughput next-generation sequencing (NGS) platforms. Currently, a 

 

7Non-coding RNAs with a length of longer than 200bp. 
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number of NGS platforms have been developed and commercialized for the accurate 

detection of DNA.  

 These sequencing approaches can be grouped into three main categories; (i) 

Second-generation sequencing platforms (Illumina, Roche 454, ABI/SOLID, Helicos 

BioScience), (ii) Third-generation sequencing platforms (Ion Torrent, Pasific Bio, 

Complete Genomics) and (iii) fourth-generation sequencing (Oxford Nanopore). All 

platforms have advantages and disadvantages in terms of sequencing and detection 

chemistries, accuracy, run time, throughput and so on (Table 2.1).  

 However, nowadays, Illumina is the mostly used platform and preferred by 

end-users due to its high-throughput, accuracy, fast and easy sample preparation 

procedure. Illumina (Solexa-based sequencing) technology is based on the sequence-

by-synthesis (SBS) incorporation of fluorescent nucleotides. The stage of Illumina 

sequencing can be divided into three steps: sample preparation, cluster generation 

and sequencing. Sample preparation is a pre-sequencing process including; (i) 

fragmenting DNA or fragmenting RNA, first and second strand cDNA synthesis, (ii) 

repairing 3’ and 5’ ends of DNA or cDNA fragments, (iii) adding an Adenine base to 

the 3’ ends, (iv) ligating pair-end adaptors to the end of fragments, (v) PCR reactions 

and validation of libraries. All these steps render sequencing libraries compatible for 

cluster generation and sequencing-by-synthesis. After libraries are constructed, DNA 

or cDNA fragments with specific adaptors are passed through a flow cell which will 

hybridize the individual molecules on flow cell based on complementary with 

adaptor sequences. It is important to note that before attachment to the flow cell, the 

library fragments are denatured, and thus a single-stranded copy of the library 

fragment is sequenced. Following this step, hybridized sequences held at both ends 

of the adaptor on a solid phase will be amplified as a bridge. After all, one million 

copies of each template in successive cycles of denaturation, amplification and 

hybridization between oligonucleotides on flow cell and DNA fragments. This entire 

process is known as cluster generation. After the clusters are generated and one 

strand removed from DNA fragments, sequencing reagents (mainly, DNA 

polymerase and fluorescent nucleotide) are passed through the flow cell to do 
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Figure  2.1. Illumina (Solexa) sequencing workflow. (A) DNA or cDNA sample preparation for sequencing, (B) Bridge 
amplification and cluster generation of adapter ligated DNA fragments, (C) Sequencing by synthesis and imaging 
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sequencing by synthesis. Sequencing by synthesis defines a reaction where in each 

synthesis cycle, the addition of a single nucleotide, which can be A, C, G, or T, as 

determined by a fluorescent signal, then is imaged, so that the location and added 

nucleotide can be determined, stored, and analyzed. Reconstruction of the sequence 

of additions in a specific location on the flow cell, which corresponds to a generated 

DNA cluster, provides the precise nucleotide sequence for an original piece of DNA 

fragments (Figure 2.1) (29-31). 

 

2.3. RNA-Sequencing 

In the biological perspective, the term of transcriptome is defined as the complete set 

of all expressed RNA transcripts including; protein-coding (mRNA) and non-coding 

(rRNA, tRNA, snRNA, snoRNA, miRNA, lncRNA, piwi-interacting RNA and so 

on) RNA species. Uncovering all functioning transcripts at genome-wide level by 

various methods provide a considerable amount of information regarding the 

molecular mechanism of specific cellular functions.  

 Currently, two experimental techniques are in use for identifying transcripts 

on a genome-wide scale; microarray and next generation RNA sequencing (RNA-

Seq) technologies. In most cases, when comparing two methods, it is reported that 

RNA sequencing has a superior performance over microarray technologies in terms 

of the dynamic range of transcripts (RNA-Seq is at least 8000-fold, compared with 

∼60-fold for microarrays), less noisy data, detecting novel transcripts and isoforms. 

Therefore, RNA-Seq replaced microarrays as the technology of choice in finding 

novel transcripts and gene expression profiling. 

 As a more comprehensive way, RNA-Seq based transcriptome approaches are 

being routinely used for various purposes; (i) characterizing transcriptome profile, 

(ii) measuring the expression level of transcripts, (iii) detecting splicing isoforms and 

fusion transcripts, (iv) finding novel transcripts in the genome, (v) profiling small 

regulator RNAs and (vi) identifying coding variants. Since the expression dynamics 

of protein-coding genes must be regulated precisely during development, disease and 

other physiological conditions in specific cell types, the measuring gene expression 

levels is particularly appealing among these applications. In addition, the differences 

in spatial and temporal expression pattern can be associated with cancer 
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development. Therefore, robust statistical methods are urgently needed for 

classifying the gene expression information obtained from RNA-Seq based 

expression profile. 

 

2.4. RNA-Sequencing Data Analysis Workflow 

In this section, we provide a pipeline and describe the commonly used computer-

assisted statistical methods to give a quick snapshot view to how to handle the high-

throughput RNA-Seq data. 

Experimental Design: In statistical hypothesis testing, it is vital to plan a good 

experimental design to obtain the maximal information with minimum cost. This is 

also same in RNA-Seq analysis, since a common interest in RNA-Seq analysis is the 

identification of the relevant genes with the interested condition. Thus, we aim to 

model the relationship between each gene and class condition, and need a good 

experimental design. A good experimental design should include the basic principles 

of Fisher: (i) replication, (ii) randomization and (iii) blocking (32). Replication refers 

to the number of samples in each run. Technical and biological replicates are the two 

types of replication. Technical replicates refer to one individual with technical steps 

replicated, while biological replicates refer to multiple individuals. In a good 

experimental design, biological replicates should be preferred and increased to 

increase the power of the used statistical test, and generalize the results. Pooling the 

biological samples may be alternative design, but will provide less powerful results. 

Randomization is the process of randomly allocating the samples across the 

conditions and should be applied during sample preparation to minimize the 

technical variation. It is also recommended to index and multiplex8 the samples to 

reduce the effect of lanes and flow cells. If this is not possible, a blocking design 

should be preferred including some samples in each condition arranged in each 

sequencing lane (33,34).  

Power Analysis: Another issue in RNA-Seq analysis is the power estimation based 

on the used statistical method. In this way, one can determine a satisfactory sample 

size for differential expression analysis. Most of the current differential expression 

analyses are based on complex negative binomial models. Several power estimation 

 

8Sequencing multiple samples in a lane simultaneously. 
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methods can be found in (35-37). Scotty is another tool that can be used for this 

purpose with an extra option to estimate the sequencing depth (38). 

Raw Data: In a single run, NGS platforms provide millions of short sequence reads 

with corresponding quality scores for each base call. The data format may differ 

based on the sequencing platform. Illumina produces these reads in FASTQ format. 

These FASTQ files consists four lines for each read. An example format is as below: 

 

@genkokbioinf_3615 

GATAGTAGGTTCTAAGCAGTATCGATCAAATAGTAAATCCTCTTGTT 

+ 

!''*(+)(%**+))%%%++)(%%%%).1***-+*''))**55CCF>> 

 

First line begins with the @ character and followed with an identifier of the read. 

Second line consists the raw sequence reads. Third line begins with the + character 

and optionally followed by the same identifier. Last line includes the quality scores 

for each base-call in ASCII code. 

Quality Assessment: Before starting to analysis, quality assessment of the data is a 

crucial step that may affect the results of further analysis (e.g. alignment accuracy). 

NGS platforms provide quality assessment results by themselves. However, these 

results focus on detecting the problems in the sequencing process. Quality 

assessment process should consider detecting the problems in both sequencing and 

the other experimental processes such as starting library material. FASTQC is a 

widely preferred software in assessing the quality of NGS reads (39). This tool 

contains several modules including basic statistics, per base sequence quality, per 

sequence quality scores, per base sequence content, per base GC content9, per 

sequence GC content, per base N content, sequence length distribution, duplicate 

sequences, overrepresented sequences and overrepresented Kmers. Other quality 

assessment tools include HTSeq (40), R ShortRead (41) and PRINSEQ (42). 

Filtering: After the quality assessment, next step is to preprocess the data to obtain 

high-quality and clean reads. These preprocessing include quality filtering, quality 

trimming, removing sequencing adapters, masking nucleotides with 'N', etc. FASTX 

 

9Percentage of guanine or cytosine nucleotides in a DNA sequence ((G+C)/(A+T+G+C)). 
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toolkit is a collection of these and some other modules (43). QTrim is another 

popular tool used for this purpose (44). 

Alignment: Following the quality assessment and filtering procedures, next step is 

the read alignment. In alignment step, high-quality and clean reads are mapped to a 

reference genome or transcriptome. Each model organism has reference FASTA files 

similar to FASTQ format, but have no quality scores. An example format is as 

below: 

 

>1 dna:chromosome chromosome:GRCm38:1:1:195471971:1 REF 

TTCTGTTTCTATTTTGTGGTTACTTTGAGGAGAGTTGGAATTAGGTCT

TCTTTGAAGGTCTGGTAGAACTCTGCATTAAACCCATCTGGTCCTGG

GCTTTTTTTTTTTTTTTTTTTTTTTTTTGGGTGGGAGACTATTGATGAC

TGCCTCTATTTCTTTAGGGGAAATGGGACTTTTAGTCCATGAATCTG

ATCCTGATTTAGCTTTGGTACCTGGTATCTGTCTAGGAAGTTGTCCAT

TTCATCCAGGTTTTCCTGGTTTTTTTTTAGTATAGCCTTTCATAGTAA

AATCTGATGATGTTTTTGATATCCTCATGTTCTGTTGGTATGTCTCCT

TTTTCATTTCTGATTTTGTTAATTATAGTACAGTCCCTATGCCCTCTA

GTTAGTCTGGCTAAGGGTTTATCTATCTTGTTGACTTTCTCAAAGAAC

CAGCTACTATTTTGGTTGATTCTTTGAATATTTCTTTTTGTTTCCACTT

GGTTGATTTCAGCTCTGAGTTTGATTATTTCCTGCTGTCTACTCATCT

TGGGTGAATTTGCTTCCTTTTGTTCTAGAGCTTCTAGATTTGCTGTCA

GGCTGCTAGTGTATACTCTAGTTTCCTTTTGGAGGCACACAGGCCTG

TGAGTTTTACTCTTAGGACTGCCTCATTGTGCCCCAT... 

 

 First line begins with the > character and followed with a single line 

description. Followed lines contain the sequences in each genomic position. 

Burrows-Wheeler Aligner (BWA) (45) and Bowtie2 (46) are the standard aligners 

for DNA based NGS analysis. These aligners are also applicable for RNA-Seq 

analysis, if all coding regions or splice junctions are known. If one cares about 

detecting novel transcripts or alternative-splicing, it is critical to use splice-aware 

aligners. Tophat2 is a splice-aware extension of Bowtie2 algorithm and among the 
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most widely applied tool in RNA-Seq analysis (47). MapSplice (48) and Star (49) are 

the other commonly used splice-aware aligners. 

De-novo Transcriptome Assembly: One can use de-novo transcriptome assembly10 

methods while working with non-model organisms. In this way, a reference file can 

be generated from the data itself and the transcript abundances can be provided for 

further analysis. Popular de-novo transcriptome assembly tools include Trinity (50), 

Oases (51), SOAPdenovo-Trans (52) and Trans-ABySS (53). After generating 

assemblies, RSEM (54) and CORSET (55) algorithms can be used to estimate the 

transcript abundances. 

Feature Counting: It has been reported that the number of mapped reads is correlated 

with the abundance of transcripts. Thus, we need to count the number of mapped 

reads to each transcript to obtain the expression levels. This step can be 

accomplished using featureCounts (56), HTSeq (40) and bedtools (57) tools. 

 After this step, the raw count data is obtained which is the input for 

differential expression analysis, also the developed algorithms in this thesis. 

 

2.5. RNA-Sequencing Data 

2.5.1. Notations 

The main difference between RNA-Seq and microarray data matrices is that the 

matrix elements are nonnegative and integer-valued counts in RNA-Seq, where they 

are the log-intensities in microarrays. In this section, we will describe RNA-Seq data 

and introduce some notations that will be used throughout the thesis.  

 After feature counting process, we obtain a     dimensional X count matrix, 

where p is the number of genomic features          , and n is the number of 

observations (e.g. tissue samples)          . These genomic features may refer to 

genes, transcripts, exons, spliced mRNA isoforms, non-coding RNAs or any 

predefined transcriptome subsets. For simplicity of language, we will use the term 

gene to refer genomic features and the term sample to refer observations throughout 

the thesis. Each matrix element, let's say    , is the number of mapped read counts to 

gth gene for ith sample. We define                denote the row g and           

               denote the column i of X matrix. We define         
 
    the 

library size or the total number of counts for sample i,          
 
    total number of 

 

10Construction of a transcriptome without the information of a reference genome. 



19 
 

counts that mapped to gth gene and          
 
   

 
    the total library size or the 

sum of the number of counts within the X matrix. Let y, a vector with a length n, 

containing the class labels of each sample and let K the number of biological 

conditions or classes             . Let             denotes the set of 

sample indices belonging to kth class. Finally,                 is a vector of new 

test samples whose class labels    will be predicted. 

 An example of RNA-Seq data matrix is given in Table 2.2. This data contains 

the read counts of Witten et al. (58) cervical data. This data matrix X contains the 

counts of 714 miRNAs (     ), belonging to 58 samples (    ). These samples 

belong to 2 classes (   ) where 29 of them are non-tumor (     ) and the 

remaining 29 are tumor (     ). The first element of the matrix has the count 

value of 865 (       ), corresponding to 865 mapped sequence reads to the let-7a 

miRNA for the first non-tumor sample. The library size for this sample is 22,449 

(          ), total mapped read count for let-7a miRNA is 284,257 (    

       ) and the total library size is 13,701,148 (              ). 

 

2.5.2. Discrete Models 

The discrete type of RNA-Seq data lead researchers to present models based on 

discrete probability distributions. Poisson based models are considered in several 

studies (15-17), 

 

                                  

 

 This model allows for the variability in both    term, the total number of 

counts per gene, and the    term, the total number of counts per sample, where 

      
   . Poisson models are valid when technical replicates are used in 

experiments and      represents both mean and the variance (18). Due to the 

reproducibility of RNA-Seq protocols and to make an inference to
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Table 2.2. An example count data matrix format for p genes, n samples and K classes. 

miRNA Non-tumor samples Tumor samples Total 

Sample-1 Sample-2 Sample-3 ... Sample-29 Sample-30 Sample-31 Sample-32 ... Sample-58 

let-7a 865 810 5,505 ... 38 3,343 4,990 5,193 ... 1,422 284,257 

let-7g 447 173 1,922 ... 126 737 4,141 3,760 ... 2,081 128,348 

miR-125b 1,038 5,007 2,595 ... 106 381 1,463 201 ... 1 337,394 

miR-18a 5 4 10 ... 0 10 9 56 ... 0 634 

miR-29a 320 447 904 ... 4 413 4,619 1,398 ... 1 134,382 

miR-490-5p 0 1 0 ... 0 0 0 0 ... 0 19 

miR-874 2 4 9 ... 0 4 0 3 ... 0 509 

... ... ... ... ... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... ... ... ... ... 

miR-93 10 18 126 ... 0 36 133 211 ... 0 7,028 

miR-99b 24 92 97 ... 177 36 62 19 ... 20 11,718 

Total 22,449 39,798 71,717 ... 8,034 58,362 431,247 84,850 ... 16,338 13,701,148 
In this matrix, the rows indicate genes, where the columns indicate samples. The numbers in each cell are the mapped sequence read counts (to a reference genome or transcriptome) of 
gth gene for ith sample. First column of this table describe the names of genes, first row describe the names of classes and second row describe the name of samples. The numbers in last 
column are the total number of counts for gth gene. The numbers in last row are the library sizes (i.e. the total number of counts for ith sample). 
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population, biological replicates are used (59). In case of the presence of biological 

replicates, counts have variance excluding the mean and the overdispersion problem 

arises. Negative binomial (NB) distribution can model the overdispersed counts with 

an extra dispersion parameter of    , which reduces to Poisson distribution when 

   , 

 

                                

 

 In this condition, NB distribution is parameterized with mean         , and 

variance                      
 
  . These two models are extended in some 

studies as follows (10,15,58,60,61): 

 

                                     

                                   

 

 Here,     term allows the gth gene to be differentially expressed in the kth 

class. Witten et al. (2) considered the Poisson model and maximum-likelihood 

parameter estimation (MLE) method in fitting counts. For an expected size of counts 

        , the authors used the MLE as                 (62),             and 

        . They fit the model as follows: 

 

                                     

 

 Assuming the prior distribution of     to be Gamma( ,  ), MLE estimate is 

provided with       
    

  

         
  

 .      can be interpreted as follows: 

 if       , then the gth gene is up-regulated11 in class k, 

 else if       , then the gth gene is down-regulated12 in class k. 

 

 

 

 

11Increase in the expression level of a gene or other cellular component. 
12Decrease in the expression level of a gene or other cellular component. 
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2.5.3. Normalization 

Total counts     and     are dependent on the experimental design. This leads to 

existence of technical biases. These biases can have significant effect on the 

statistical results, should be detected and corrected. The source of variation may 

come out either from non-systematic and systematic biases (63). 

 Firstly, different samples may have very different library sizes within a single 

RNA-Seq experiment. A sample may have higher counts not only from the 

abundance of RNAs for the gth gene, but also from the sequencing depth. The library 

size     would be higher, if ith sample is deeply sequenced. For instance, we can say 

that 31st sample in cervical dataset has sequence depth at least 50 times higher than 

sample 29 (Table 2.1). This may lead to substantial problems in downstream 

analysis, unless it is corrected. 

 Another source of variation may arise from the gene length. At the same 

expression level, we expect that more reads will be aligned to a longer gene than a 

shorter one. In this way, statistical tests will have higher power when analyzing 

longer genes than for shorter genes (63). Thus, the total number of counts for gth 

gene     will be higher for longer genes.  

 Other technical biases may arise from the sequence composition (e.g. GC 

content), the presence of majority fragments in experiment, sampling bias in library 

construction and PCR amplification (33). Due to all these technical biases, each 

count should be normalized before conducting statistical analysis. Here we describe a 

number of methods used in this correction. 

Total count normalization: MLE estimate             can be considered as a size 

factor estimate (15). This is known as total count (TC) normalization method. The 

limitation of this normalization method is that the library size for sample i is strongly 

associated with a few highly expressed genes, which may skew the analysis results. 

Upper quartile normalization: Bullard et al. (60) overcame this limitation with using 

the upper quartile (UQ) of counts (  ), instead of total counts. The size factor 

estimate is        
 

 
   

 
   . Note that only genes with non-zero counts are included 

to this calculation (33). 
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Median normalization: Median normalization is similar to upper quartile 

normalization. Only difference is that median value is used in place of third quartile 

(              ). 

Quantile normalization: This normalization is primarily used in microarrays. All 

quantiles are matched between lanes, in normalizing counts (64). 

Reads per kilobase per million mapped reads normalization: Together with the 

sequence depth, reads per kilobase per million mapped reads (RPKM) method also 

adjust the counts for gene length. In RPKM method, size factors are estimated using 

    
       

     
 .    refers to the length of gth gene. RPKM allows comparing expression 

levels of genes within a sample; however this may lead to unbiased variance 

estimates of counts (65). 

Trimmed mean of M-values normalization: Trimmed mean of M-values (TMM) 

method firstly trims the data based on the log-fold-changes13 (   
 , as default 30% in 

edgeR software) and the absolute intensity (  , as default 5% in edgeR software). 

Next, TMM calculates the weighted mean of gene-wise log-fold-changes (  ). The 

weights are calculated using the delta method (66) which can be considered as the 

inverse of the asymptotic variances. In this normalization, TMM uses a reference 

sample (r) in calculating normalization factors (61): 

 

         
   

    
    

   

   

    
   

   

           

 

where    
  

             

             
 and    

  
       

       
 

       

       
;          . 

 

 In the formula,    corresponds to genes which are not trimmed and used in 

the calculation.     is the library size for the reference sample. If the user does not 

provide any reference sample, edgeR software (19) normalizes the data using UQ 

method and selects the reference sample that has count values closer to mean value 

than the other samples. 

 

13A value describing the variation from an initial to final value. 
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Deseq median ratio normalization: This method generates a pseudo-reference 

sample by calculating the geometric means across samples. Size factors are estimated 

from the median of the count ratio of ith and pseudo-reference sample, over all g 

genes: 

 

           
   

     
 
    

               

 

 Size factors are estimated from           
 
    (10). 

 Using the methods described above, normalized counts can be obtained from 

   
         . TMM and deseq median ratio normalizations are found to be more 

effective approaches in correcting for sequence depths. Both approaches minimize 

the effect of majority sequences (67). 

 

2.5.4. Transformation 

Even the count data is normalized, microarray based statistical methods are not 

applicable due to the highly skewed nature of the data. RNA-Seq has a large dynamic 

range (0 to 105) than microarrays (68). The sample-to-sample variation is higher in 

genes with larger expression than the lower ones. This brings the heteroscedasticity 

problem. Instead of using discrete models, one may consider transform the data 

matrix X to Z and assume           
     

  . Rendering the RNA-Seq count data 

approximately homoscedastic will allow the use of various methods such as 

classification, clustering, principal component analysis, etc. Here, we introduce 

several specialized transformation methods in this section: 

Shifted logarithmic transformation: The simplest way to scale RNA-Seq data is the 

log2 transformation. However, the existence of zero counts will lead to infinite 

values. A basic solution is to add a small constant of 1 to avoid this problem: 

 

                          

 

Even the transformed data has less skew distribution with less extreme values, the 

variances are still unequal for all genes. 
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Variance-stabilizing transformation: Anders et al. (10) presented variance-stabilizing 

transformation (vst) to transform RNA-Seq data. Vst is based on the variance 

stabilization concept (69) and error modeling. After transformation, vst provides 

variances that are independent from the mean. We obtain the vst transformed data as 

follows: 

 

     
 

       
   

   

 

           

 

where                
 , and       

  

  
. 

 

 In the formula,    is the mean and         is the variance for gth gene.    

and    are estimated using generalized linear models (70). Vst is an effective 

transformation method in variance stabilization. However, it does not work so well 

for data with unequal library sizes (23). 

Regularized logarithmic transformation: Love et al. (23) proposed regularized 

logarithmic (rlog) transformation by taking into account the unequal library sizes. 

For this purpose, rlog transformation applies a shrinkage approach as used in 

DESeq2 method (23). Transformed values are similar to vst or log2 transformed 

values for genes with high counts, while shrunken together for genes with low 

counts. Rlog transformation ignores the class label of data and considers all samples 

as replicates. The rlog transformation is calculated as follows: 

 

                                 

 

 In this formula,     corresponds to the baseline gene expression level for 

each sample, while     corresponds to the shrunken log-fold-changes of the 

normalized counts in base 2 scale. 

Power transformation: Witten et al. (2) considered applying a simple power 

transformation to the counts. For         , transformed count values can be 

obtained from the following formula: 
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      (2.11) 

  

 α is selected using a grid search based on the goodness of fit of the model 

(62): 

 

  
     

      

   
 

 
      

   
 

 

   

 

   

                       

 

 In this formula,      ,     denotes to the total number of transformed counts 

for sample i,     denotes to total number of transformed counts for gene g, and     is 

the sum of the number of transformed counts within the Z matrix. Witten et al. (2) 

assumed that     follow a Poisson distribution (                      
) since Z 

contains non-integer values. 

Voom transformation: Unlike other transformation methods, voom takes X as input 

and extracts Z and W, also     dimensional, matrices. Z contains    , the log-counts 

per million (log-cpm) values for each sample and each gene, and W is the precision 

weight matrix containing the variances of each log-cpm value. Counts per million 

(cpm) is a basic measure which is calculated from the ratio of each count (+ 0.5, a 

small constant) to its library size in millions. Law et al. (1) considered log-cpm 

values analogous to the log-intensities in microarrays with the difference that log-

cpm values do not have constant variances. Unlike logarithmic transformation, log-

cpm accounts for the unequal library sizes and makes libraries scaled and 

comparable with each other. However, depending on the heteroscedasticity of the 

data, genes with higher counts have larger variances. The authors demonstrated that 

the standard deviation of log-cpm values is nearly equal to the coefficient of 

variation of raw counts. Further, it is mentioned that the mean-variance trend for log-

cpm values are smoothly decreasing with count size and asymptotes to a value for 

genes with higher counts depending on the dispersion or biological variability 

(Figure 2.2) (1). 
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Figure 2.2. Voom mean-variance modeling for cervical data (2) 
 

 To eliminate the mean-variance effect of log-cpm values, the authors 

provided the precision weights as well. These weights are estimated non-

parametrically from the mean-variance relationship at the observational level instead 

of gene level as other methods. This yields robust estimates even for data with 

unequal library sizes. Locally weighted scatter plot smoothing (Lowess) curves14 are 

used for this purpose, the variances of log-cpm values are estimated using this 

relationship. Inverse of these variances are considered as the weights       for 

sample i and gene g. This enables users to downweight unreliable samples or 

measurements and increases the power in gene expression analysis. These weights 

can be considered as analogous to empirical quality weights of microarrays, where 

the poor-quality samples are downweighted similarly. Voom method has several 

advantages as compared to other methods: 

1. observed mean-variance relationship matches more perfectly to theoretical 

mean-variance relationship after voom transformation,  

2. mean-variance trend is more precise, mostly for different RNA samples with 

different sequence depths,  

3. gives access to make use of empirical Bayes estimation theory,  

 

14A nonparametric regression method which smoothes a curve between two variables on a scatter plot. 
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4. voom transformed normal distributed data with variance modeling partly 

supported by generalized linear model theory. 

 The strong capabilities of voom method allow to use similar workflows for 

microarrays and RNA-Seq techniques, also allow obtaining results comparable with 

each other. Law et al. (1) entered these weights into the limma analysis pipeline with 

the log-cpm values for differential expression analysis. Incorporation of these 

weights into a linear modeling pipeline led limma to perform better than the other 

count-based differential expression methods in controlling the type-I error rate, 

having the best power and lowest false discovery rate. The advantages of voom 

method given above and its well coordination with limma method in differential 

expression analysis points out to high performance results also for the other analysis 

types such as classification and clustering. 

 Zwiener et al. described several other transformation approaches, such as 

Box-Cox, Blom, rank transformation, etc. to scale RNA-Seq data, where the details 

can be found in (70). 

 

2.6. Linear and Quadratic Discriminant Analysis 

Let X and Y random variables for a matrix of expression data and a vector of class 

labels, respectively. Let               the classes,    the prior probabilities for 

class k, where       
   . Let                  class-conditional density 

function of X, for class k.  

 In statistical decision theory, posterior class probabilities            

are needed to be estimated for optimal classification. Bayes rule can simply be used 

to motivate this estimation: 

 

            
       

        
 
   

            

 

 Modeling the class-conditional density function has the most importance in 

estimating posterior probabilities and many techniques are present to model      , 

such as: 

1. Gaussian densities, 
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2. Mixtures of Gaussian densities, 

3. Nonparametric density estimates, 

4. Naïve Bayes models. 

 

 Linear discriminant analysis (LDA) uses the first model, multivariate normal 

distribution in modeling           : 

 

           
 

    
 
  

 
 

  
 
 
                            

 

 Here,    and   are parameters referring to class-specific mean vector and the 

common within variance-covariance matrix, respectively. After we replace Formula 

2.14 into Formula 2.13 and do some algebra, we obtain the linear discriminating 

function, which is linear in   : 

 

  
          

       
 

 
  

                          

 

   is a new test observation here, which will be assigned to the class maximizes the 

  
       .   ,   and    are unknown parameters and are estimated from the training 

data: 

           
 
   : sample mean vector for class k, 

                       : sample pooled variance-covariance matrix, 

          . 

 Quadratic discriminant analysis (QDA) is a basic extension of LDA. QDA 

assumes that the variance-covariance matrices are not common within classes 

(      ). Thus, the sample variance-covariance matrices should be calculated 

separately in each class to estimate   . 

 

2.7. Diagonal Linear and Quadratic Discriminant Analysis 

LDA is inapplicable in high-dimensional settings (   ). The problem arises due to 

the singularity of the estimated variance-covariance matrix (  ). The inverse of the 
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estimated variance-covariance matrix (    ) cannot be calculated, which is required 

in the computation of   
       . 

 In microarray classification, diagonal extensions of LDA and QDA are 

presented (8). Here, the class-conditional densities are estimated using Naïve Bayes 

models. These models assume that the genes are independent in each class, thus the 

class densities are obtained from the products of marginal densities. Since the genes 

are independent with each other in this setting, the covariances are assumed to be 

zero. This is also known as 'independence rule15' and leads to calculation of diagonal 

covariance matrices               
       

  , where the off-diagonal elements are 

all set to be zero (8,71). It has been showed that diagonal extensions of discriminant 

classifiers outperform the traditionally used LDA and QDA in high-dimensional 

classification analysis. If we use diagonal variance-covariance matrices, we obtain 

the following discriminant rule for class k: 

 

  
           

           

  
 

 

   

                      

 

 This discrimination rule is called as diagonal linear discriminant analysis 

(DLDA).      is the sample mean of gth gene in class k and   
  is the sample pooled 

variance of gth gene. Again, a new test observation (  ) will be assigned to the class 

which maximizes the   
         discriminating function. The second rule, diagonal 

quadratic discriminant analysis (DQDA) assumes that the gene specific variances are 

not equal across groups. So, each class variance should be calculated separately (   
  

instead of   
 ) for gth gene to estimate    

 . 

 

2.8. Nearest Shrunken Centroids 

Despite the high-dimensional capabilities of DLDA and DQDA classifiers, decision 

boundaries are generated from all genes. This leads obtaining very complex models 

in classifying high-dimensional data. When the number of genes is large, it is 

essential to work with a significant gene subset that contributes most to class 

prediction. In this way, we can get more simple, interpretable and reduced variance 

 

15Ignoring the covariance structure of the data in model building. 
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models (63). To overcome the complexity of diagonal discriminant classifiers, 

Tibshirani et al. (6) developed nearest shrunken centroids (NSC) algorithm, an 

extension of diagonal discriminant classifiers. NSC is a sparse classifier which uses a 

shrinkage procedure to identify the most relevant gene subsets in class prediction. 

NSC shrinks the standardized class means (or centroids) of genes to the standardized 

overall means, then eliminates the genes which have shrunken means and finally 

builds a classification model with the remaining genes. 

 The steps of NSC algorithm is as follows: (i) calculation of difference scores 

between class means and overall mean, (ii) shrinkage of difference scores to zero 

using soft-thresholding, (iii) elimination the shrunken genes and keeping the 

remaining of them, (iv) building a DLDA classifier with the updated means. 

 A new test observation (  ) will be assigned to the class that will maximize 

the following   
        discriminating function: 

 

  
          

           

        

 

   

                      

 

    is set to be a positive constant to make the gene expression levels 

independent across genes. Mostly    is calculated from the median value of    over 

the set of genes. Posterior class probabilities            for both diagonal 

discriminant analysis and NSC classifier can be calculated as follows: 

 

        
          

            
   

            

 

 In identifying the subset of genes, k-fold cross-validation16 is applied to find 

the optimal shrinkage parameter. The parameter which gives the most accurate and 

sparse classification model is considered as the optimal parameter and used for 

prediction. Here, we illustrate it with an example of microarray data. We use the 

colon cancer data of Alon et al. (72) which contains the expression levels of 2,000 

genes belonging to 62 samples. Of these 62 samples, 40 of them are tumor, while the 

remaining 22 are normal samples. We consider detecting the optimal gene subset that 
 

16A repeated model validation procedure that the data is split into k folds in which the training 
procedure is applied in the k-1 fold and tested on the remaining 1 fold. 
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will accurately predict whether the class of a new test observation is tumor or 

normal. After performing cross-validation technique and a grid search of shrinkage 

parameter between 0 and 5.5, we find 3.218 as optimal value. This value gives the 

most accurate and sparse model in predicting colon cancer samples. Using this 

optimal value, only 15 genes will be considered in the classification process with an 

accuracy of 85.5% (Figure 2.3).  

 Shrunken centroids and the distribution of expression levels of selected genes 

are displayed in Figure 2.4 and Figure 2.5. 

 

 

 

Figure 2.3. Optimization of shrinkage parameter in colon cancer microarray data (72) 



33 
 

 

Figure 2.4. Shrunken centroids for the colon cancer microarray data (72)  

 
Figure 2.5. Gene expression level distributions of selected 15 genes in colon cancer 

microarray data (72) 
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2.9. Poisson Linear Discriminant Analysis 

Poisson linear discriminant analysis (PLDA) is developed by Witten et al. (2) for the 

classification of RNA-Seq data. PLDA is an extension of Tibshirani et al. (6) NSC 

algorithm for high-dimensional discrete data. Witten et al. (2) considered modeling 

class-conditional densities from the product of marginal Poisson densities. In other 

words, samples in the kth class are assumed to have a Poisson distribution of Formula 

2.3 and the genes are independent with each other. Writing Formula 2.3 into Formula 

2.13 and performing some algebra, we obtain the following discriminating function: 

 

  
                    

 

   

                   

 

   

            

 

 A new test observation    will be assigned to the class that maximizes 

  
        . Formula 2.19 is linear in    and contains all genes in the model unless 

       for all classes k.     is estimated as         . Estimation of     will be 

discussed in Section 3.1.1. 

 Similar with the shrinkage of difference scores to zero in NSC classifier, 

PLDA shrinks      towards 1 using soft-thresholding method. Assuming the prior 

distribution of     to be Gamma( ,  ),      is estimated as follows: 

 

     

 
 
 

 
 

 

 
 

  

 
        

 

 
      

 

 
 

  

 
          

 

 
    

         
 

 
    

             

 

where       
  ,            

  .    is the threshold parameter, which is 

optimized using cross-validation method. Shrunken differential expression rates can 

be obtained from: 
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2.10. Negative-Binomial Linear Discriminant Analysis 

Dong et al. (5) extended PLDA considering negative-binomial distribution as class-

conditional densities as in Formula 2.4. Due to the variability which arises from 

biological replicates, RNA-Seq data is overdispersed and Poisson models are 

inappropriate in this setting. Witten et al. (2) suggested a power transformation to 

overcome this problem. Alternatively, Dong et al. (5) proposed negative-binomial 

linear discriminant analysis (NBLDA), which takes advantage of the extra dispersion 

parameter of negative-binomial distribution in solution of overdispersion problem. 

NBLDA estimates the dispersion parameter using a shrinkage approach of (21). 

 Class-conditional densities used in NBLDA method is given as follows: 

 

           

      
 
  

 

      
 
  

 
 

         

           
 

   

 
 

           
 

 
  

          

 

 After plugging Formula 2.22 into Formula 2.13 and performing some algebra, 

we obtain the discriminating function of NBLDA: 

 

  
                                             

 

   

  
 

   

                            

 

   

            

 

 A new test observation    will be assigned to the class that maximizes 

  
         . The relationship between NBLDA and PLDA can be addressed as 

follows: 

 

                                                                           

 

 It means that decreasing the dispersion parameter will approximate the data 

distribution towards Poisson, thus will approximate NBLDA towards PLDA. For this 
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reason, Dong et al. (5) describes NBLDA as a generalized version of PLDA 

classifier. 

 Estimation of      and      is similar with PLDA algorithm. Estimation of     

will be discussed in Section 3.1.1. To estimate     NBLDA uses the shrinkage 

method of (21) which shrinks the gene-specific estimates towards a target value 

using method of moments: 

 

                           

 

where   is a weight defined as: 

 

  
      

 
 

    
 
    

 

      
 
   

        
 
 

 
        

            

 

 In the formula,     refers to the initial dispersion estimates obtained from the 

method of moments, ξ is the target value calculated from: 

 

                
 

 

   

             

 

2.11. MLSeq Software for RNA-Seq Classification 

Zararsız et al. (22) presented an R package in BIOCONDUCTOR network to make 

RNA-Seq classification less complicated for researchers and allow users to fit 

classifiers using single functions. MLSeq package requires from users to upload their 

raw count data in which can be obtained from feature counting tools (e.g. HTSeq 

(40), featureCounts (56), etc.) and allow them to normalize, transform and build 

classifiers including SVM, bagging SVM, RF and CART (Figure 2.6). 
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Figure 2.6. A screenshot of MLSeq package in R/BIOCONDUCTOR network 
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3. MATERIAL and METHODS 

3.1. VoomDDA Classifiers 

In this section, we detail the methodology of voomDDA classifiers. We assume that 

the input data is a     dimensional count data matrix, which consists of either     

raw or    
  normalized count values. Moreover, genes with zero or very low counts 

should be filtered before starting to analysis. For simplicity, we will assume 

throughout this section that the input data is a     dimensional, filtered and non-

normalized count data matrix X. 

 

3.1.1. Calculation of Log-Cpm Values and Estimation of Precision Weights 

Firstly, we calculate the log-cpm values using the following formula: 

 

        (
       

     
    )           

 

 Small constant values 0.5 and 1 in the formula are used to avoid taking 

logarithm of zero and guaranteeing that                         

 To estimate the weight matrix W, containing the variances of log-cpm values 

   , we benefit from the delta rule, linear models and lowess smoothing curves. We 

assume a linear model between the expected size of the log-cpm values and the class 

conditions as follows: 

 

 (   )      
   

              

 

 In the formula,    corresponds to a vector of regression coefficients to be 

estimated. These coefficients are the log-fold-changes between class conditions (1). 

Matrix notation of this equation is as follows: 

 

 (  )                
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 D in the formula represents the design matrix17 with the rows   .    is a 

vector containing the log-cpm values for gth gene. For each gene, we fit these models 

using ordinary least squares method and obtain the fitted coefficient  ̂ , fitted log-

cpm values  ̂   
   

  ̂  and the standard deviations of residuals   .  

 Let   ̅  ∑  ̂   
   

    the mean log-cpm value for gth gene, and                

 ̃    ∏         
       , the geometric mean of the library sizes plus one. Using 

delta rule, we obtain the mean log-counts  ̃  as follows: 

 

 ̃    ̅      ( ̃  )                     

 

 Fitted counts are calculated from the fitted log-cpm values accordingly: 

 

 ̂    ̂   
                                 

 Now, we estimate the mean-variance relationship for each gene, using the 

mean log counts  ̃  and the square root of residual standard deviations   
   . A 

lowess curve (73) is fitted with the      smoothing function as follows: 

 

  
     ( ̃ )           

 

 A piecewise linear function       is obtained from the fitted lowess curve by 

interpolating the curve for the  ̃  values in order. Finally, we obtain the     precision 

weights (i.e. variances of log-cpm values) as follows: 

 

      ( ̂  )
  

           

 

 Log-cpm values    , and the associated precision weights     will be used in 

model building process of voomDDA classifiers. 

 

 

 

17A matrix containing the values of exploratory variables and an optional indicator variable (0 or 1).  
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3.1.2. Classification Models Based on Diagonal Weighted Sample Covariance 

Matrices 

We assume the genes independent from each other in building classification rules. 

Let             ̅    (∑     
 
       ) ∑     

 
    class-specific weighted mean for kth 

class,  ̅   (∑    
 
      ) ∑    

 
    overall weighted mean,  ̂     

    ( 
   
      

   
 ) diagonal weighted sample covariance matrices for kth class and 

 ̂      (   
        

 ) weighted pooled covariance matrix. The diagonal 

elements of these matrices are obtained from the class specific and pooled weighted 

variances respectively. The off-diagonal elements of these matrices are all set to be 

zero. The weighted pooled variance of gth gene can be calculated as follows: 

 

   
  

∑    
 
   

 ∑    
 
      ∑    

  
   

∑   (      ̅)          

 

   

 

 

 The weighted variance of gth gene in class k can be calculated as follows: 

 

 
   
  

∑     
 
   

 ∑     
 
      ∑     

  
   

∑    (       ̅ )          

 

   

 

 

 Here, we define voomDLDA and voomDQDA classifiers, which are 

extensions of DLDA and DQDA classifiers for RNA-Seq data with the weighted 

parameter estimates. voomDLDA assumes that the gene specific weighted variances 

are equal across groups and use the weighted pooled covariance matrix in modeling 

class-conditional densities        The second rule voomDQDA uses separate 

covariance matrices  ̂     obtained by class-specific weighted variance statistics.  

 

3.1.3. Prediction of Test Observations for VoomDLDA and VoomDQDA 

Classifiers  

Discriminant rules for voomDLDA and voomDQDA classifiers are given as below: 
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              ∑

      ̅     

   
 

 

   

       ̂              

 

  
              ∑

      ̅     

 
   
 

 

   

       ̂              

 

 A new test observation      will be assigned to class which maximizes the 

  
             or   

            . An important point here is that same parameters 

should be used for both training and test sets to guarantee that both sets are on the 

same scale and homoscedastic with each other. Thus,     should be obtained after 

normalizing and transforming    based on the properties of training dataset. 

 Suppose that the training dataset is normalized using the deseq median ratio 

normalization method. Then the size factor of a test observation  ̂  will be calculated 

as follows: 

 

          {
   

(∏    
 
   )

   
}            

 

 ̂  
  

∑   
 
   

            

 

 If we use TMM normalization method, then the reference sampled that is 

selected in training set, will be used for the calculations of test dataset. Let     the 

library size for the test observation. Then, we calculate TMM normalization factors 

as below: 

 

         
   

∑    
    

   

   

∑    
   

   

            

 

where    
  

             

             
 and    

  
       

       
 

       

       
;          . 
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 In voom transformation, log-cpm values for    can be calculated as: 

 

        (
       

     
    )            

 

 If a normalization (e.g. deseq median ratio, TMM, etc.) applied before, then  

   
       ̂  is used instead of     in the formula. 

 

3.1.4. Sparse VoomNSC Classifier for RNA-Seq Classification 

Similar to microarrays, RNA-Seq data is high-dimensional as well. Therefore, it is 

common to obtain very complex models with voomDLDA and voomDQDA 

classifiers. Here, we present voomNSC algorithm to overcome this complexity and 

obtain more simple, interpretable and reduced variance models. voomNSC is an 

extension of Tibshirani et al. (6) NSC algorithm with incorporating both log-cpm 

values and the associated weights together into the estimation of model parameters 

by using the weighted statistics. A flowchart displaying the steps of voomNSC 

algorithm is given in Figure 3.1.  

 Similar with NSC algorithm, voomNSC aims to identify the most significant 

gene subset for class prediction. Briefly, the standardized class specific weighted 

gene expression means are shrunken to the standardized overall gene expression 

weighted means, then the shrunken genes are eliminated and a voomDLDA 

classification model is built with the remaining genes. Mean expressions can be 

called as centroids as well. Let      the weighted difference scores, between 

weighted centroids of kth class and overall weighted centroids: 

 

     
 ̅     ̅  

           
            

 

 In the formula,    is a standard error adjustment term set as √        . 

    is a small positive constant added to the denominator of Formula 3.16 to ensure 
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that the variance of the difference scores are independent from the gene expression 

level.     is calculated from the median value of     across genes. 

 

 

Figure 3.1. A flowchart of the steps of voomNSC algorithm 
 

 These weighted difference scores can be considered as the voom extension of 

the “relative differences” mentioned in (74). One can use these scores for the purpose 

of differential expression analysis with the significance analysis of microarrays 

(SAM) method. Formula 3.16 can be rewritten as: 

 

 ̅     ̅                              
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 Next, each      is shrunken to zero using the soft-thresholding shrinkage 

method. Soft-thresholding is equivalent to lasso derivation and commonly used 

approach due to its reliable mean estimates. Using soft-thresholding with an amount 

of λ, threshold parameter, weighted shrunken differences can be obtained as follows: 

 

 
   
      (    )   (|    |     )            

 

 After shrinking       
   
 , we update the weighted centroids as follows: 

 

 
 ̅  
   ̅               

   
             

 

 Increasing λ will lead to obtain more sparse models by eliminating most of 

the genes from the class prediction. Suppose that  
   
  is zero for a gene g, for all 

classes, then the weighted centroids will be same across the classes. In this way, this 

gene will not contribute to the class prediction. 

 

3.1.5. Selection of the Optimal Threshold Parameter (λ) 

Selection of λ is very important on the model sparsity. Increasing λ will lead to obtain 

sparser models, but may give inaccurate results. Small values of λ may give more 

accurate results, but may provide very complex models. Thus, it is necessary to 

select λ that yields to both accurate and sparse results. Figure 3.2 displays the test set 

errors for a set of λ parameters for cervical dataset of (58). It is seen that we obtain 

the minimum misclassification errors for the values of                      

  {                                                                       }. 

 Among these values, selecting the maximum one will give us the sparsest 

solution. For this reason, we select 1.775 and obtain 96.5% accuracy with using only 

16 features. One can also use cross-validation technique and select the sparsest 

model that minimizes cross-validation error. 
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Figure 3.2. Selection of voomNSC threshold parameter for cervical data 

 

3.1.6. Prediction of Test Observations for VoomNSC Classifier 

Test observations are normalized and transformed based on the training set 

parameters which are detailed in Section 3.1.3. Again, a standardization is applied to 

the     , log-cpm values of test observations, by        . We classify a test 

observation to the class that maximizes the following discriminating function: 

 

  
             

 

 
∑

      ̅     

          

 

   

      ̂              

 

 Posterior probabilities can be obtained from (2.18). 
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3.2. Implementation of Classifiers 

To assess the performance of developed algorithms, we compared our results with 

several classifiers. In this section, we give implementation details of the used 

classifiers. 

 Firstly, we selected discrete RNA-Seq classifiers (i.e. PLDA and NBLDA), 

since they are the only algorithms proposed for RNA-Seq classification. We also 

applied the diagonal discriminant classifiers, after transforming the data 

hierarchically closer to microarrays. SVM and RF algorithms are also considered due 

to their accurate performances in microarray based classification studies. 

Implementation of each algorithm including voomDDA classifiers are given below: 

PLDA1: The data is normalized using deseq median ratio method. Normalized count 

values are taken as input to PLDA algorithm. Five-fold cross validation is performed 

to identify the optimal ρ tuning parameter. A grid search (number of search: 30) is 

applied and the sparsest model with the minimum misclassification error is selected 

to optimize ρ. PLDA is applied with the optimum ρ in PoiClaClu R package (75). 

PLDA2: After normalization, a power transformation (   
  √       ) is applied 

to reduce the effect of overdispersion and make genes have nearly constant variance 

(76). Normalized and transformed expression values are the input to PLDA 

algorithm. Other procedures are same as PLDA1. 

NBLDA: Deseq median ratio method is used for normalization. Yu et al. (21) 

shrinkage method is applied for estimation of dispersion parameter. Normalized 

counts are used as input to NBLDA algorithm. NBLDA is applied in R software with 

the necessary codes available in (5). 

NSC: Deseq median ratio method is used for data normalization and rlog 

transformation is applied to normalized count data. Normalized and transformed 

expression values are used as input data for NSC algorithm. Proportions of class 

sample sizes are used as class prior probabilities. Five-fold cross validation is used to 

determine the optimal threshold value. Optimum threshold value is obtained from the 

sparsest model with the minimum misclassification error after a grid search (number 

of search: 30). NSC is applied in pamr package of R (77). 

DLDA: Deseq median ratio method is applied for data normalization and rlog 

transformation is applied to normalized count data. Normalized and transformed 
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expression values are used as input data for DLDA algorithm. Proportions of class 

sample sizes are used as class prior probabilities. Then DLDA is applied in sfsmisc 

package of R (78). 

DQDA: Same procedure is applied with DLDA algorithm (78). 

SVM: Deseq median ratio method is used for data normalization and rlog 

transformation is applied to normalized count data. Normalized and transformed 

expression values are used as input data for SVM algorithm. Five-fold cross 

validation is performed, repeated for three times and a grid search (with tune length 

of 10) is made to identify the optimal sigma and cost parameters. Radial basis 

function was used to allow SVM for nonlinear classification. SVM is applied in caret 

package of R (79). 

RF: The applied procedure is similar with SVM. Here, the optimized parameter is the 

number of variables randomly sampled as candidates at each split. Number of trees 

are set as 500. RF is applied in caret package of R (79). 

voomNSC1: Deseq median ratio normalization is applied to data and the normalized 

data is used as input to voomNSC classifier. Proportions of class sample sizes are 

used as class prior probabilities. To optimize the threshold value, the sparsest model 

with the minimum misclassification error is selected. A grid search (number of 

search: 30) is applied to determine the optimal threshold value. 

voomNSC2: Raw read counts are directly used as input for voomNSC algorithm. All 

other procedures are remained to be same with voomNSC1. 

voomNSC3: TMM method is applied to normalize the data. Normalized data is used 

as input to voomNSC classifier. Other procedures are same with voomNSC1 and 

voomNSC2. 

voomDLDA1: Deseq median ratio normalization is applied to data and the normalized 

data is used as input to voomDLDA classifier. Proportions of class sample sizes are 

used as class prior probabilities. 

voomDLDA2: Raw count data is not normalized and directly used as input to 

voomDLDA classifier. Other procedures are same with voomDLDA1.  

voomDLDA3: TMM method is used for normalization. Other procedures are same 

with voomDLDA1 and voomDLDA2. 
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voomDQDA1: Deseq median ratio normalization is applied to data and the 

normalized data is used as input to voomDQDA classifier. Proportions of class 

sample sizes are used as class prior probabilities. 

voomDQDA2: Raw count data is not normalized and directly used as input to 

voomDQDA classifier. Other procedures are same with voomDQDA1. 

voomDQDA3: TMM method is performed for normalization. Other procedures are 

same with voomDQDA1 and voomDQDA2. 

 All necessary codes for voomDDA classifiers are available as supplementary 

material to this thesis. 

 

3.3. Evaluation of voomDDA Classifiers 

To evaluate the performance of the developed algorithms, we performed a 

comprehensive simulation study. Four real datasets were also used to illustrate the 

applicability of voomDDA classifiers and assess their performance in real 

experiments. 

 

3.3.1. Simulation Study 

Simulation Setup 

We simulated data (    dimensional matrix) under 648 scenarios using negative 

binomial distribution as follows: 

 

   |                                                             

 

where NB corresponds to negative binomial distribution,     corresponds to     , 

    is the differential expression probability for each of the          genes 

among classes, and    is the dispersion parameter. For a given     ,     has mean 

       and variance         
   .    is the size factor for each sample and simulated 

identically and independently from                 .    refers to the total number 

of counts per gene and also simulated identically and independently from 

            . If a gene is not differentially expressed among classes k, then     is 

set to 1.  Otherwise,            ̃  , where  ̃  ‟s are identically and independently 
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distributed from  ̃          . σ is set to 0.10 or 0.20 in simulations. Of the total 

         genes, 500, 1,000 and 2,000 genes with maximum variances are 

selected. We added a small constant (    ) to count values of each simulated data 

to avoid taking the logs of zero in following analysis. 

 The simulated datasets contain all possible combinations of: 

 number of genes;                    , 

 number of biological samples;                   

 number of classes;          , 

 probability of differential expression:                , 

 standard deviation parameter:             

 dispersion parameter; (  =0.01: very slight,   =0.1: substantial;   =1, very 

high overdispersion). 

 Simulation codes are obtained from the CountDataSet function of the 

PoiClaClu R package (75) and manipulated based on the simulation details given 

above. Seed number is set to a constant of „10072013‟ in all analysis steps. 

 

Evaluation Process 

After simulating the datasets, the following steps are applied in order. A flow chart is 

provided for the reader to better understand the evaluation process (Figure 3.3). 

Data splitting: The data are randomly split into training and test sets with 70% and 

30%, respectively. The feature data can be denoted as Xtr and Xts, where the class 

labels can be denoted as ytr and yts. 

Near-zero filtering: Since the genes with low counts can affect the further analysis 

(e.g. linear modeling inside voom transformation), genes having near zero variances 

are detected in the training dataset and filtered in this step. For this purpose, two 

criteria are used for filtering: (i) the frequency ratio of the most frequent value to 

most frequent second value is higher than 19 (95/5), (ii) the number of unique values 

divided by the sample size is less than 10%. Selected genes with near zero variances 

are both filtered from training and test datasets. 
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Figure 3.3. Simulation design and the evaluation process 

 

 

Variance filtering: Next, a second filtering is applied to keep only the informative 

genes in the model. In training dataset, 500, 1,000 and 2,000 genes with maximum 
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variances are selected and other genes are filtered from both training and test 

datasets. In this selection, data are normalized using deseq median ratio method, 

transformed using vst transformation and genes are sorted in decreasing order based 

on their variances. The count values of the selected genes were fetched again for 

further analysis. 

Normalization: After filtering steps, the datasets are normalized to adjust the sample 

specific differences using deseq median ratio method or TMM method depending on 

the used classification methods. The datasets are not normalized for voomNSC3, 

voomDLDA3 and voomDQDA3 classifiers. Note that, the normalization of test 

datasets are made based on the information obtained from the training datasets. 

Since, training and test sets should be in the same scale and be homoscedastic 

relative to each other. Therefore, the test samples should each be independently 

normalized using the same parameters calculated from the training set. This 

procedure is explained in detail in Section 3.1.3.  

Transformation: After normalization, several transformations are applied to data to 

estimate the mean and variance relationship of the data and convert it from discrete 

to continuous format. The transformations are not used for PLDA1, NBLDA and 

classifiers. VoomDDA classifiers use voom method inside the algorithm for 

transformation. A power transformation is applied for PLDA2 classifier. Rlog 

transformation is performed for other classifiers, due to its capability of accounting 

for variations in sequencing depth across samples (23). Similar with the 

normalization, test sets are transformed based on the mean and variance relationship 

(of genes or samples) properties of the training sets. Thus, we do not re-estimate the 

mean-variance relationship of the data, but use the same    coefficients same with 

the training set. 

Model fitting and parameter optimization: In order to avoid overfitting18 and 

underfitting19, we optimized the tuning parameters of classifiers before model fitting. 

Five-fold cross validation approach is used on the training set and the parameter that 

gives the minimum misclassification error is identified as optimal parameter. Same 

folds are used in all classifiers to make the results comparable. In case of equal 

misclassification errors, best parameter is chosen based on its sparsity. Next, 

classification models are fit on Xtr and ytr with the optimal tuning parameters. 

 

18The problem that arises when a statistical model captures the noise of the data. 
19The problem that arises when a statistical model could not capture the actual trend of data. 
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Prediction and performance evaluation: Using the built classification models, we 

used Xtr to predict ytr, calculated the misclassification error of each model. Number 

of genes used in each model is also saved in order to assess sparsity. 

Since we mimic the real datasets, sample sizes are set to be very small relative to the 

number of genes. Thus, the misclassification errors may be highly variable 

depending on the split of samples into training and test sets. To overcome this 

problem, all the entire simulation procedure was repeated 50 times and the 

summaries are given in the Results section. 

 

3.3.2. Application to Real RNA-Sequencing Datasets 

Experimental datasets 

Cervical dataset: Cervical dataset is a miRNA sequencing dataset obtained from 

(58). miRNAs are non-coding small RNA molecules with average 21-23 bp length 

and take role in the regulation of gene expression. The objective of this study was to 

both identify the novel miRNAs and to detect the differentially expressed ones 

between normal and tumor cervical tissue samples. For this purpose, the authors 

constructed 58 small RNA libraries, prepared from 29 cervical cancer and 29 

matched control tissues. After deep sequencing with Solexa/Illumina sequencing 

platform, they obtained a total of 25 Mb and 17 Mb RNA sequences from the normal 

and cancer libraries respectively. Of these 29 tumor samples, 21 of them had a 

diagnosis of squamous cell carcinomas, 6 of them had adenocarcinomas and 2 were 

unclassified. In our analysis, we used the data that contains the sequence read counts 

of 714 miRNAs belonging to 58 human cervical tissue samples, where 29 tumor and 

29 non-tumor samples are treated as two distinct classes for prediction. 

Alzheimer dataset: This dataset is another miRNA dataset provided from Leidinger 

et al. (80). The authors aimed to discover potential miRNAs from blood in 

diagnosing Alzheimer and related neurological diseases. In this purpose, the authors 

obtained blood samples from 48 Alzheimer patients that were evaluated after 

undergoing some tests including Alzheimer Disease Assessment Scale-cognitive 

subscale (ADAS-Cog), Wechsler Memory Scale (WMS), and Mini-Mental State 

Exam (MMSE) and Clinical Dementia Rating (CDR). A total of 22 age-matched 

control samples were obtained and all sample libraries were sequenced using 
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Illumina HiSeq2000 platform. After obtaining the raw read counts, the authors 

filtered the miRNAs with less than 50 counts in each group. We used the data 

including 416 read counts of 70 samples, where 48 Alzheimer and 22 control 

samples are considered as two separate classes for classification. 

Renal cell cancer dataset: Renal cell cancer (RCC) dataset is an RNA-Seq dataset 

that is obtained from The Cancer Genome Atlas (TCGA) (81). TCGA is a 

comprehensive community resource platform for researchers to explore, download, 

and analyze datasets. We downloaded this dataset (with options level 3, RNASeqV2 

data) from this database and obtained the raw 20,531 known human RNA transcript 

counts belonging to 1,020 RCC samples. This RNA-Seq data has 606, 323 and 91 

specimens from kidney renal papillary cell (KIRP), kidney renal clear cell (KIRC) 

and kidney chromophobe carcinomas (KICH), respectively. These three classes are 

referred as the most common subtypes of RCC (account for nearly 90%-95% of the 

total malignant kidney tumors in adults) and treated as three separate classes in our 

analysis (82). 

Lung cancer dataset: Lung cancer is another RNA-Seq dataset provided from TCGA 

platform. Same options were used in the download process. The resulting count file 

contains the read counts of 20,531 transcripts of 1,128 samples. The dataset has two 

distinct classes including lung adenocarcinoma (LUAD) and lung squamous cell with 

carcinoma (LUSC) with 576 and 552 class sizes, respectively. These two classes are 

used as class labels in our analysis. 

 

Evaluation Process 

A similar procedure is followed with the simulation study. The data are randomly 

split into two parts as training (70%) and test (30%) sets. Near zero filtering is 

applied to all datasets except Alzheimer, since low counts were already filtered by 

the authors of the study (80). Next, 2,000 transcripts with the highest variances are 

selected in each renal cell cancer and lung datasets. Appropriate normalization, 

transformation and model fitting processes are applied same with the simulation 

study. In prediction step misclassification errors for Alzheimer and renal cell cancer 

datasets are balanced due to the unbalanced class sizes. 
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 We repeated the whole process 50 times, since cervical and Alzheimer 

datasets have relatively small sample size. Test set errors may differ for different 

train/test splits. Seed number is set between 1 to 50 the analysis steps. In results 

section, summary statistics are given across these 50 repeats. 

 

3.3.3. Evaluation Criteria 

To assess the performance of classifiers, we used three criteria: (i) sparsity, (ii) 

accuracy and (iii) computational cost. We simply assessed the sparsity of each model 

by calculating the sparsity, number of selected genes in each model, or relative 

sparsity, which is the ratio of the number of genes selected in each classification 

model over total number of genes. A model which uses lower number of genes in the 

decision rule, thus have lower relative sparsity is considered as sparser model. To 

measure accuracy, we calculated misclassification errors of each model in the test 

set. Due to the high-dimension of the RNA-Seq data, it is possible to meet with the 

overdispersion problem, that a classification method may perfectly classify the 

training data, but may not perform well in test data. Since we are mostly interested in 

predicting the class labels of new observations accurately in real life problems, we 

randomly split each dataset into training and test sets. All model building processes 

are applied in training set and the performance assessment is made in test sets. 

Misclassification errors are calculated from the confusion matrices of each 

prediction. A model with less misclassification error is considered as more accurate 

model. A confusion matrix is given in Table 3.1 and the formula of misclassification 

error is given below: 

 

Table 3.1. Confusion matrix for a classification model 

Prediction of a 

classifier ( ̂  ) 

Actual labels (   ) Total 

Positive Negative 

Positive TP FP TP+FP 

Negative FN TN FN+TN 

Total TP+FN TP+FN nts 

TP: True positive, FP: False positive, TN: True negative, FN: False negative,  

nts: sample size of the test set 
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 In case of unbalanced class sizes, misclassification error may be leading to 

measure the actual accuracy. Suppose that we are working with Alzheimer dataset 

and a classifier predicted all the 21 test class labels as Alzheimer. If we use 

misclassification error as criteria, the error will be calculated as 0.33 disregarding the 

variability in class sizes. In both Alzheimer and renal cell cancer datasets, class sizes 

are unbalanced. Here, we used balanced misclassification error as evaluation criteria: 

 

                                   

  
      

  
     

 
            

 

 For multiclass problems, both measures are calculated by one-versus-all20 

method by comparing each class label to the remaining labels. Finally, computational 

costs are computed from the process time intervals of each classifier during the 

model building process. 

 

3.3.4. Computational Infrastructure and Parallel Programming 

We used R programming language and RStudio software (Version 0.98.1103) in 

order to develop the algorithms and apply the experiments. R is a free and open 

source software for statistical computing available at (83). RStudio is an integrated 

development environment developed to execute R codes easier as well as providing 

tools for plotting, debugging history and workspace management (84). 

 To reduce the computational cost of the entire experimental processes, we 

arranged the simulation codes into a special form to be able to work in multiple 

platforms. We split the scenarios into several workstations, run the analysis in these 

computers, saved the results and finally assembled together. The computational 

properties of each workstation are given in Table 3.2: 

 

 

 

20Assuming one class as positive and the remaining classes as negative to calculate binary 
performance measures in multiclass classification problems. 



56 
 

Tablo 3.2. Computational properties of the used workstations in analysis 

Workstation Operating  

system 

CPU Memory Number  

of cores 

Hacettepe University,  

Department of Biostatistics 

Windows 7 Core i7 3960X, 

3.30 GHz 

64 GB 12 

Personal Computer Ubuntu 14.04 

LTS 

Core i7 4770,  

3.40 GHz 

16 GB 8 

Erciyes University,  

Department of Biostatistics 

OS X 

Yosemite 

10.10.2 

Core i7 Quad 

Core, 4 GHz 

32 GB 8 

Erciyes University,  

Genome and Stem Cell Center,  

Division of Bioinformatics 

Windows 8 Xeon E5-1650, 

3.20 GHz 

64 GB 12 

Erciyes University,  

Genome and Stem Cell Center,  

Division of Bioinformatics 

Ubuntu 14.10 Xeon E5-1650, 

3.20 GHz 

16 GB 12 

Marmara University,  

Department of Physics 

Windows 7 Core i7 3930K, 

3.20 GHz 

16 GB 8 

University of California, 

San Diego Supercomputer  

Center 

OS X 

Yosemite 

10.10.2 

Xeon Quad 

Core, 2x2.66 

GHz 

16 GB 8 

 

 We also used parallel programming to carry out the computations 

simultaneously. For this reason, we used the R packages doSNOW (85), doParallel 

(86), doMC (87), foreach (88) and digest (89). In this way, we obtained all 

experimental results in less than two weeks. 

 

3.4. Development of a Web-Based Platform 

To provide the developed algorithms applicable for researchers, we benefited from 

the R shiny package (90). Shiny allows users to build interactive web applications 

with R software. In order to build the voomNSC tool, two scripts 

are constructed including the user-interface script and the server script. User-
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interface script is used to build the design of the interface and to control the layout, 

while server script contains all necessary instruction codes, which makes the tool 

available. After developing voomNSC, both scripts are embedded into a web-server 

to provide the applicability of voomNSC on web. This server is located at Hacettepe 

University, Faculty of Medicine, Department of Biostatistics and used for the 

BIOSOFT Project. This project is dedicated to develop free, up-to-date and user-

friendly web tools in various scientific areas using the R language environment. 

Users can freely access to our application from the project 

website: http://www.biosoft.hacettepe.edu.tr/voomDDA/ . 

 These two scripts are provided in Supplementary Material 3. Users can 

execute the software locally in their personal machines from these files using the 

following R codes: 

 
> library(shiny) 

> runApp("voomDDA") 

 

http://www.biosoft.hacettepe.edu.tr/voomNSC/
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4. RESULTS 

4.1. Simulation Results 

Simulation results for each scenario are given in Figure 4.1 - 4.36. These figures 

differ with different combinations of number of classes ( ), probability of 

differential expression (   ) and standard deviation (σ). Odd numbered figures give 

the accuracy results, while the even numbered figures give the sparsity results. Note 

that the sparsity results are only given for sparse classifiers (i.e. NSC, PLDA1, 

PLDA2, voomNSC1, voomNSC2 and voomNSC3). All figures are given in same 

format in same matrix layout. Each figure displays the effect of sample size ( ), 

number of genes (  ), dispersion parameter (  ) on the accuracy and sparsity of 

classification models. Axis panels give the results for sample size, ordinate panels 

give the results for dispersion parameter. Each panel demonstrates the error bars for 

each classifier on classification performance. Classifiers are displayed in axes, 

evaluation measures are displayed in ordinates in each panel. Each measure is in the 

range [0,1], with lower values corresponding to more accurate or sparser models. 

Error bars are generated from the arithmetic mean and 95% confidence levels of each 

performance measure in 50 repeats. Black, red and green bars correspond to the 

results for 500, 1,000 and 2,000 genes, respectively. 

 As can be seen from the figures, an increase in the sample size leads to an 

increase in the overall accuracies, unless the data is overdispersed. This relation is 

more distinct for very slightly overdispersed scenarios. However, this increase does 

not affect the amount of sparsity. Number of genes has considerable effect on both 

accuracy and sparsity. Including more genes into classification models mostly leads 

to more accurate results for PLDA (PLDA1, PLDA2) and voomNSC (voomNSC1, 

voomNSC2, voomNSC3) classifiers, unless the data is overdispersed. Increasing the 

number of genes mostly provides less accurate results for other classifiers. However, 

this relation may change in some scenarios depending on the increase of sample size 

and standard deviation. VoomNSC and PLDA classifiers mostly produce sparser 

results depending on the increase in the number of genes. This situation is quite 

opposite for the NSC algorithm in most scenarios. 

 The change in dispersion parameter has direct effect on both model 

accuracies and sparsities. When the data become more spread, all methods have
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Figure 4.1. Accuracy results for the simulation scenario K=2, egk=1%, σ=0.1 
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Figure 4.2. Sparsity results for the simulation scenario K=2, egk=1%, σ=0.1 
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Figure 4.3. Accuracy results for the simulation scenario K=2, egk=5%, σ=0.1 
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Figure 4.4. Sparsity results for the simulation scenario K=2, egk=5%, σ=0.1 
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Figure 4.5. Accuracy results for the simulation scenario K=2, egk=10%, σ=0.1 
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Figure 4.6. Sparsity results for the simulation scenario K=2, egk=10%, σ=0.1 
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Figure 4.7. Accuracy results for the simulation scenario K=3, egk=1%, σ=0.1 
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Figure 4.8. Sparsity results for the simulation scenario K=3, egk=1%, σ=0.1 



67 
 

 
Figure 4.9. Accuracy results for the simulation scenario K=3, egk=5%, σ=0.1 



68 
 

 
Figure 4.10. Sparsity results for the simulation scenario K=3, egk=5%, σ=0.1 
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Figure 4.11. Accuracy results for the simulation scenario K=3, egk=10%, σ=0.1 
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Figure 4.12. Sparsity results for the simulation scenario K=3, egk=10%, σ=0.1 
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Figure 4.13. Accuracy results for the simulation scenario K=4, egk=1%, σ=0.1 
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Figure 4.14. Sparsity results for the simulation scenario K=4, egk=1%, σ=0.1 
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Figure 4.15. Accuracy results for the simulation scenario K=4, egk=5%, σ=0.1 
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Figure 4.16. Sparsity results for the simulation scenario K=4, egk=5%, σ=0.1 
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Figure 4.17. Accuracy results for the simulation scenario K=4, egk=10%, σ=0.1 
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Figure 4.18. Sparsity results for the simulation scenario K=4, egk=10%, σ=0.1 
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Figure 4.19. Accuracy results for the simulation scenario K=2, egk=1%, σ=0.2 
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Figure 4.20. Sparsity results for the simulation scenario K=2, egk=1%, σ=0.2 
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Figure 4.21. Accuracy results for the simulation scenario K=2, egk=5%, σ=0.2 
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Figure 4.22. Sparsity results for the simulation scenario K=2, egk=5%, σ=0.2 
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Figure 4.23. Accuracy results for the simulation scenario K=2, egk=10%, σ=0.2 
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Figure 4.24. Sparsity results for the simulation scenario K=2, egk=10%, σ=0.2 
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Figure 4.25. Accuracy results for the simulation scenario K=3, egk=1%, σ=0.2 
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Figure 4.26. Sparsity results for the simulation scenario K=3, egk=1%, σ=0.2 
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Figure 4.27. Accuracy results for the simulation scenario K=3, egk=5%, σ=0.2 
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Figure 4.28. Sparsity results for the simulation scenario K=3, egk=5%, σ=0.2 
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Figure 4.29. Accuracy results for the simulation scenario K=3, egk=10%, σ=0.2 
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Figure 4.30. Sparsity results for the simulation scenario K=3, egk=10%, σ=0.2 
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Figure 4.31. Accuracy results for the simulation scenario K=4, egk=1%, σ=0.2 
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Figure 4.32. Sparsity results for the simulation scenario K=4, egk=1%, σ=0.2 
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Figure 4.33. Accuracy results for the simulation scenario K=4, egk=5%, σ=0.2 
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Figure 4.34. Sparsity results for the simulation scenario K=4, egk=5%, σ=0.2 
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Figure 4.35. Accuracy results for the simulation scenario K=4, egk=10%, σ=0.2 
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Figure 4.36. Sparsity results for the simulation scenario K=4, egk=10%, σ=0.2
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decreases in their classification accuracies. In slightly overdispersed data, all 

classifiers, except NSC, produce sparse results. NSC gives sparser solutions based on 

the increase in the differential expression probability. This probability increase 

causes to less sparse solutions in PLDA classifier in many scenarios. 

 Increasing the number of classes lead to a decrease in classification 

accuracies. This relation particularly arises when the number of genes and the 

differential expression probability increases as well. The decrease in the performance 

of PLDA2 and voomNSC classifiers is less than the other algorithms. An increase in 

the class numbers affect the sparsity of NSC classifier in negative way, while do not 

affect the other classifiers. 

 Nearly all classifiers demonstrate more accurate performances depending on 

the increase in the differential expression probability. Only PLDA1 and NSC 

classifiers show less accurate performances in this situation depending on the 

increase in the standard deviation. The increase in these differential expression 

probabilities brings sparser model performances, mostly for NSC algorithm in 

slightly overdispersed datasets. The increase in the standard deviation leads to more 

accurate and sparser classification performances. This may be on contrary for NSC 

classifier in slightly overdispersed datasets. In this case, sparser solutions come out 

mostly in slightly overdispersed datasets. 

 When we assess the performances of classifiers within each other, PLDA2 

and voomNSC classifiers performed to be the most accurate algorithms for slightly 

overdispersed datasets. PLDA1 may be considered as the second performer, RF as 

the third performer and NSC as the fourth performer classifiers. In substantially 

overdispersed datasets, voomNSC classifiers become to be the most accurate 

classifiers, mostly for the scenarios with high number genes. PLDA2 gives 

compatible results with these classifiers. RF provides substantial results behind 

voomNSC and PLDA2 classifiers. In highly overdispersed data, all methods 

generally give very poor results. Considerable performances may be seen when the 

number of class decreases, and the number of samples, differential expression 

probability and the standard deviation increases. In such cases, again PLDA2 and 

voomNSC classifiers outperform other classifiers, mostly for the high number of 

genes. 
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 In slightly overdispersed datasets, all methods, except NSC algorithm, 

provide very sparse results. Sparser results for NSC algorithm are seen with the 

increase in probability in differential expression and standard deviation. In datasets 

with substantial overdispersion, voomNSC classifiers seem to show their ability, and 

produce sparser models than the other classifiers, especially in scenarios with high 

number of genes. In highly overdispersed datasets, voomNSC classifiers clearly 

build the sparsest models. In this case, PLDA classifiers give less sparse solutions, 

while NSC algorithm gives the poorest results. 

 Nonsparse voomDDA classifiers gave compatible results with the rlog 

generalizations of DLDA and DQDA classifiers. Dispersion has a significant effect 

on PLDA classifier and PLDA2 classifier outperforms PLDA1 in both accuracy and 

sparsity in most scenarios. 

 To make an overall evaluation of the classifiers, we can say that PLDA2 and 

voomNSC classifiers outperform other classifiers based on the accuracies. When we 

consider the sparsity measure, voomNSC classifiers are the overall winner and 

provide the sparsest solutions than the other methods. Finally, we note that the 

normalization does not have significant effect on the performance of voomNSC 

algorithm, since all three forms of this method performed very similar results. 

 

4.2. Real Dataset Results 

For each dataset, the principal component analysis plots for the first two dimensions 

are given in Figure 4.37. Again for each dataset, the distribution of dispersion 

statistics is given in Figure 4.38. Method of moments approach is used to estimate 

the parameters: 

 

    
        

            
            

 

 Real dataset results are given in Table 4.1 and Table 4.2. Table 4.1 

demonstrates the misclassification errors and Table 4.2 demonstrates the sparsities 

for each classifier across 50 repetitions. 
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Figure 4.37. Principal component analysis plots for each dataset 

 
 

 
Figure 4.38. Distribution of dispersion statistics for each dataset 
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 In cervical dataset, NBLDA, SVM and NSC algorithms gave the most 

accurate results with 8.9%, 10.1% and 10.8% misclassification errors, respectively. 

NBLDA and SVM algorithms use all miRNA's for prediction while NSC selected an 

average of 194 of them. VoomNSC and PLDA2 classifiers errors were between 11-

12%. An average of 290 miRNAs was selected for PLDA2 classifier, while this 

number was between 56.28 and 63.34 for voomNSC classifiers. Thus, voomNSC 

classifiers can be considered as the best performers, since the average test errors 

were compatible with NBLDA, SVM and NSC algorithms; however they use 

substantially fewer miRNAs than the other classifiers. 

 In Alzheimer dataset, SVM and voomDQDA2 algorithms performed more 

accurately than the other algorithms with 8.7% and 13.9% misclassification errors, 

respectively. PLDA1 was the sparsest classifier with an average of 11 miRNAs, 

however its test error was 31.7%, which is relatively higher than the other 

algorithms. Among the other sparse classifiers, voomNSC3 and voomNSC1 fit the 

other sparsest models with an average of 30 and 48 miRNAs, respectively. Thus, 

SVM and voomNSC3 classifiers can be considered as the best performers. For this 

dataset, SVM may build more accurate but complex models. On the other hand, 

voomNSC3 classifier may give sparser results with relatively less accurate results 

than SVM algorithm. 

 In renal cell cancer dataset, SVM and RF are the most accurate classifiers 

with 6.5% and 7.7% misclassification errors, respectively. PLDA1 classifier 

performed as the poorest algorithm with 75.6% test set error. The performance of 

voomNSC classifiers were around 18-19%, which is relatively less accurate than 

other algorithms. Misclassification errors of other classifiers were between 13-15%. 

When we look at the sparsity results, NSC and PLDA2 classifiers provided less 

sparse solutions, with an average of 1989 and 1649 genes, respectively. PLDA1 and 

voomNSC2 performed moderate results with an average of 607 and 701 genes, 

respectively. VoomNSC1 and voomNSC3 gave the sparsest results for this dataset. 

VoomNSC1 selected an average of 178 genes, while voomNSC3 selected 202 genes. 

In this case, we recommend using SVM and RF classifiers to obtain more accurate 

results and recommend voomNSC1 and voomNSC3 for sparsest results. 
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Table 4.1. Misclassification errors of classifiers for real datasets 

Classifier Cervical Alzheimer Renal Cell Cancer Lung Cancer 

 DLDA 0.149 (0.015) 0.197 (0.012) 0.140 (0.003) 0.098 (0.002) 

 DQDA 0.140 (0.012) 0.188 (0.012) 0.135 (0.003) 0.098 (0.002) 

 NBLDA 0.089 (0.010) 0.198 (0.014) 0.139 (0.003) 0.098 (0.002) 

 NSC 0.108 (0.011) 0.201 (0.012) 0.140 (0.003) 0.097 (0.002) 

 PLDA1 0.287 (0.029) 0.317 (0.014) 0.756 (0.044) 0.262 (0.028) 

 PLDA2 0.111 (0.011) 0.223 (0.013) 0.143 (0.003) 0.100 (0.002) 

 RF 0.135 (0.012) 0.204 (0.013) 0.077 (0.002) 0.062 (0.002) 

 SVM 0.101 (0.010) 0.087 (0.010) 0.065 (0.002) 0.052 (0.002) 

 voomDLDA1 0.148 (0.015) 0.210 (0.012) 0.141 (0.003) 0.097 (0.002) 

 voomDLDA2 0.211 (0.019) 0.228 (0.015) 0.139 (0.003) 0.097 (0.002) 

 voomDLDA3 0.146 (0.015) 0.203 (0.012) 0.142 (0.003) 0.097 (0.002) 

 voomDQDA1 0.164 (0.014) 0.181 (0.012) 0.134 (0.002) 0.097 (0.002) 

 voomDQDA2 0.165 (0.013) 0.139 (0.010) 0.138 (0.003) 0.098 (0.002) 

 voomDQDA3 0.153 (0.014) 0.170 (0.011) 0.137 (0.003) 0.095 (0.002) 

 voomNSC1 0.119 (0.013) 0.227 (0.010) 0.181 (0.002) 0.097 (0.002) 

 voomNSC2 0.111 (0.010) 0.226 (0.018) 0.192 (0.003) 0.097 (0.002) 

 voomNSC3 0.112 (0.012) 0.233 (0.012) 0.184 (0.002) 0.092 (0.002) 

Values are misclassification errors, calculated from 50 repetitions and expressed as 
mean (standard error). 
Table 4.2. Sparsity results of classifiers for real datasets 

Classifier Cervical Alzheimer Renal Cell Cancer Lung Cancer 

 NSC 194.18 (27.40) 333.06 (19.04) 1989.00 (7.32) 1685.22 (47.73) 

 PLDA1 290.44 (40.01) 10.81 (9.31) 606.82 (112.40) 1339.90 (112.54) 

 PLDA2 126.66 (29.13) 228.97 (22.53) 1640.47 (81.59) 1060.84 (70.93) 

 voomNSC1 56.28 (10.94) 48.06 (10.78) 178.26 (8.18) 85.04 (39.34) 

 voomNSC2 59.16 (13.60) 140.32 (20.22) 700.90 (114.63) 122.44 (33.22) 

 voomNSC3 63.34 (13.94) 30.02 (8.10) 208.22 (42.35) 54.18 (34.97) 

Values are the number of genes selected in each model, calculated from 50 
repetitions and expressed as mean (standard error). 
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 In lung cancer dataset, SVM and RF methods are again the most accurate 

classifiers with 5.2-6.2% test set errors, respectively. PLDA1 performed as the less 

accurate algorithm with 26.2% misclassification error. The performance of other 

classifiers was quite similar and lies between 9.2% and 10.0%. NSC and PLDA 

classifiers gave substantially less sparse solutions than voomNSC classifiers. 

Number of selected genes was approximately 1685 genes for NSC, 1340 and 1061 

genes for PLDA1 and PLDA2, between 54 and 122 genes for voomNSC classifiers. 

 

4.3. Computational Cost of Classifiers 

 Along with the accuracy and sparsity results, we calculated the computational 

costs of each classifier to see whether the developed algorithms are applicable to real 

datasets. We used a workstation with the properties of Xeon E5-1650, 3.20 GHz 

CPU, 64GB memory, 12 cores. Performance results are given in Table 4.3. All 

classifiers seem to be practical for cervical and Alzheimer miRNA datasets. These 

classifiers are able to fit models less than 2.15 seconds, for these two datasets. Both 

sample size and number of features are relatively higher in renal cell and lung cancer 

datasets. This increase affects the computational performance of classifiers, mostly 

random forests and support vector machines. In overall, DLDA and DQDA 

classifiers are the fastest among these classifiers. VoomDDA classifiers 

computational performance is also considerable which is between 0.16 and 5.07 

seconds in all datasets. 

 

4.4. VoomNSC Classifiers in Diagnostic Biomarker Discovery Problems 

In this section, we detail voomNSC classifier in identifying the potential diagnostic 

biomarkers for real datasets. For this purpose, we did not apply splitting and use all 

samples of each dataset. We normalized each data using TMM normalization 

method. We applied near zero filtering and filtered 91 miRNAs from cervical 

dataset, 1,226 genes from renal cell cancer dataset and 1,171 genes from the lung 

cancer dataset. Alzheimer dataset was already filtered form the authors of that study 

(80). Variance filtering is applied for renal cell and lung cancer datasets. For this 

purpose, rlog transformation is applied and a total of 2,000 genes having maximal 

variances are selected. 
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Table 4.3. Computational costs of classifiers for real datasets 

Classifier Cervical Alzheimer Renal Cell Cancer Lung Cancer 

 DLDA <0.01 <0.01 0.07 0.06 

 DQDA <0.01 <0.01 0.08 0.05 

 NBLDA 0.63 0.29 0.94 0.60 

 NSC 0.34 0.23 2.58 1.60 

 PLDA1 1.23 0.76 20.76 16.70 

 PLDA2 1.49 0.96 29.17 21.65 

 RF 1.41 0.88 116.82 94.20 

 SVM 2.14 1.06 7.02 5.63 

 voomDLDA1 0.16 0.27 1.65 1.30 

 voomDLDA2 0.19 0.18 1.32 1.00 

 voomDLDA3 0.22 0.31 3.50 2.74 

 voomDQDA1 0.18 0.19 2.11 1.34 

 voomDQDA2 0.17 0.17 1.21 1.30 

 voomDQDA3 0.22 0.26 3.58 2.57 

 voomNSC1 0.21 0.30 2.69 2.02 

 voomNSC2 0.20 0.26 2.41 1.75 

 voomNSC3 0.27 0.50 5.07 3.47 

Values are given in seconds. 

 

 In cervical dataset, voomNSC algorithm identified the optimal model with the 

threshold value of 1.858. Using this threshold value voomNSC selected only 14 

miRNAs, which is able to assign the samples into one of the two class subtypes (i.e. 

tumor or non-tumor). Two cases are misclassified that leads to a misclassification 

error of 3.4%. In Alzheimer dataset, optimum threshold value was 3.313 and 3 

miRNAs are selected with a misclassification error of 18.6%. Optimum threshold 

value was 4.358 in renal cell cancer dataset. A total of 87 genes are selected with 

8.5% misclassification error. Finally, the threshold value was optimum at 5.360 in 

lung cancer dataset. In this dataset, only 6 genes are selected with 8.5% 

misclassification error. These results are summarized with the selected features in 

Table 4.4. Heatmap plots are given for these selected genes in Figures 4.39 - 42.
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Table 4.4. Summary of voomNSC models and selected genes in real datasets 

Classifier Misclassification  
Error 

Number of 
Features 

Selected Features 

Cervical 2/58 14 miR-1, miR-10b*, miR-147b, miR-183*, miR-200a*, miR-204,  
miR-205, miR-21*, miR-31*, miR-497*, miR-542-5p, miR-944, Candidate-5, 
Candidate-12-3p 

Alzheimer 13/70 3 miR-367, miR-756, miR-1786 
Renal Cell Cancer 87/1,020 87 SLC6A3, RHCG, CA9, ATP6V0A4, CLDN8, TMEM213, FOXI1, SLC4A1, 

PVALB, KLK1, DMRT2, ATP6V0D2, PTGER3, HEPACAM2, CLCNKB, 
BSND, LCN2, PLA2G4F, SLC17A3, ATP6V1G3, RHBG, SLC9A4, GCGR, 
CLCNKA, NR0B2, CFTR, SCEL, ATP6V1B1, NDUFA4L2, FGF9, ENPP3, 
TMPRSS2, WBSCR17, HAPLN1, ACSM2A, FLJ42875, C6orf223, SLC26A7, 
ACSM2B, LRP2, FBN3, CNTN6, UGT2A3, EPN3, CALCA, SLC22A11, KLK4, 
STAP1, LOC389493, FOXI2, CLRN3, HS6ST3, HAVCR1, PART1, EBF2, 
PCSK6, SLC28A1, SFTPB, OXGR1, CLNK, C16orf89, HSD11B2, TRIM50, 
ACMSD, CXCL14, VWA5B1, KLK15, INPP5J, LRRTM1, SYT7, HGFAC, 
FAM184B, C1orf186, KLK3, GPRC6A 
KBTBD12, HCN2, C9orf84, GCOM1, PCDH17, PDZK1IP1, KRTAP5-8, 
ODAM, RGS5, CTNNA2, GGT1, KDR 

Lung Cancer 96/1,118 6 DSG3, CALML3, KRT5 , SERPINB13, DSC3, LASS3 
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Figure 4.39. Heatmap plot for the selected miRNAs in cervical dataset 
 

 

 

Figure 4.40. Heatmap plot for the selected miRNAs in Alzheimer dataset 

 
 

 Figure 4.41. Heatmap plot for the selected genes in lung cancer dataset 
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Figure 4.42. Heatmap plot for the selected genes in renal cell cancer dataset 

 
 These plots display the expression levels of corresponding features (miRNAs 

or genes) for each sample in pixels. Horizontal rows correspond to features, while the 

vertical columns correspond to samples. The colors describe the amount of 

expression from white (large negative) to dark blue (large positive). Hierarchical 

clustering algorithm is applied to cluster both samples and features within each other. 
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5. DISCUSSION 

In this study, we presented a sparse classifier voomNSC for classification of RNA-

Seq data. We successfully coupled the voom method and the NSC classifier together 

with using weighted statistics, thus extended voom method for classification studies 

and made NSC algorithm available for RNA-Seq data. We also proposed two non-

sparse classifiers, which are the extensions of DLDA and DQDA algorithms for 

RNA-Seq classification. Law et al. (1) entered voom method into differential 

expression analysis and gene set testing. The authors mentioned that using precision 

weights with appropriate statistical algorithms increase the power of used methods. 

We extended this method for classification analysis and obtained very accurate and 

sparse results.  

 We designed a comprehensive simulation study, also used four real miRNA 

and mRNA sequencing datasets to assess the performance of developed approaches 

and compare their performances with other classification algorithms. We obtained 

successful results in both simulated and real dataset. Particularly, voomNSC sparse 

classifier is able to find the minimal subset of genes in an RNA-Seq data and 

provides fast, accurate and sparse solutions for RNA-Seq classification. 

 We both compared our results with the count based RNA-Seq classifiers and 

the microarray based classifiers after rlog transformation. Count based classifiers are 

the only developed approaches in the literature. Using microarray based classifiers; 

we found the opportunity to see the effect of voom method on classification studies. 

We selected rlog transformation for microarray based classifiers, since it accounts for 

the differences in library size, also stabilizes the variances more correctly than simple 

logarithmic transformation. In simulation results, the provided precision weights of 

voom method led to obtain both accurate and sparser models than microarray based 

classifiers. PLDA2 give compatible results with voomNSC classifiers in 

classification accuracy. However voomNSC provides sparser models, which is 

crucial for more simple, interpretable and lower variance models. In real datasets, the 

accuracy of the classifiers was comparable with each other. However, again the 

voomNSC classifiers provided the sparsest solutions. 

 Our approaches are mostly superior in providing sparser and compatibly 

accurate models to both PLDA and NBLDA, also to microarray versions of DLDA, 
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DQDA and NSC. PLDA2 and voomNSC classifiers give comparable results in model 

accuracy. We believe that this superiority originates from the robustness of voom 

method. Voom method matches the observed and expected mean-variance 

relationships perfectly with each other. Instead of modeling the mean and variance 

relationship of the data, PLDA and NBLDA aim to specify the exact probability 

distribution of counts. We made use of the normal distribution whose mathematical 

theory is more tractable than the count distributions (1). Precision weights also 

provide advantages such as working with samples with different sequencing depths, 

or down-weighting the low quality samples. 

 Dispersion has a direct effect on PLDA classifier. The reason may be that the 

PLDA algorithm uses a Poisson model which assumes the mean and dispersion are 

equal each other. Applying a power transformation enhances its performance. Thus, 

we recommend users to perform PLDA classifier always with power transformation, 

since RNA-Seq data is mostly overdispersed, because of the presence of biological 

replicates in most datasets. Overdispersion has significant effect on this classifier and 

should be taken into account before building models. NBLDA classifier (5) 

converges to PLDA algorithm, when the dispersion parameter approximates to zero. 

This classifier performed well for overdispersed cervical datasets, however does not 

perform as well as PLDA2 classifier or voomNSC classifier in other scenarios. This 

may be originated due to the absence of sparsity option of this classifier. We leave 

sparse NBLDA classification as a topic for further research. 

 In slightly overdispersed datasets, RF performs as well as the sparse 

classifiers. Moreover, this classifier performed very well in lung and renal cell cancer 

datasets. The reason may be arised from the bootstrap property of this algorithm. 

Likely to its microarray classification performance, SVM algorithm performed very 

accurate results in real datasets. Mukherjee et al. (91) mentions that this high 

accuracy arises from the strong mathematical background of SVM algorithm. The 

idea of margin overcomes the problem of overfitting and make SVM algorithm 

capable to work in high-dimensional settings. This is also true for RNA-Seq datasets, 

since rlog transformation makes this data hierarchically closer to microarrays. 

 Increasing the class number decreases the overall accuracy. This may arise 

from the decrease of assignment probability of a sample in this condition. Moreover, 
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we reach a conclusion that the effect of sample size and number of genes on 

misclassification errors is highly dependent on the dispersion parameter. Decreasing 

the number of genes and samples leads to an increase in the misclassification error, 

unless the data is overdispersed. 

 Normalization had little impact on voomDDA classifiers in simulation 

results. However, we observed that performing voomNSC algorithm without any 

normalization provides less sparse results in Alzheimer, lung and renal cell cancer 

datasets. This may be arised from the very large differences in library sizes (e.g. 2.6 

to 100.6 million in Alzheimer dataset). In this case, deseq median ratio or TMM 

methods may be applied before model building to obtain sparser results. In other 

cases, all three voomNSC classifiers provided very similar results in both model 

accuracy and sparsity. 

 We also demonstrated the use of voomNSC algorithm in diagnostic 

biomarker discovery problems. In cervical dataset, voomNSC identified 14 miRNAs 

as biomarkers with misclassifying 2 out of 58 samples. Witten et al. (58) applied 

NSC algorithm in her study and identified 41 miRNAs. A total of 9 miRNAs 

detected by the voomNSC algorithm including miR-200a*, miR-204, miR-205, miR-

1, miR-147b, miR-31*, miR-944, miR-21*, and miR-10b* were commonly 

identified with the authors (Figure 5.1). Moreover, voomNSC also used Candidate-5, 

Candidate-12-3p, miR-183*, miR-497*, and miR-542-5p in the prediction. Witten et 

al. (58) misclassified 4 out of 58 samples. Thus, our algorithm is superior to their 

procedure in both accuracy and sparsity for classifying this dataset.  

 Leidinger et al. (80) identified 12 miRNAs in classifying Alzheimer data and 

obtained 7% misclassification errors. In our study, we detected 3 miRNAs and 

obtained 18.6% misclassification error. Any of the selected miRNAs were common 

with each other. VoomNSC performed less accurate, however sparser solutions than 

their procedure. 
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Figure 5.1. A Venn-diagram displaying the number of selected miRNAs from 

voomNSC algorithm and Witten et al. (58) 
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6. CONCLUSION 

RNA-Seq has revolutionized as the premier technique in gene-expression profiling, 

all classification algorithms proposed for microarrays can be extended to RNA-Seq 

based gene-expression studies. RNA-Seq technique can detect novel transcripts, 

which may be a significant biomarker in an interested condition. This technique is 

less noisy than microarrays, thus may enhance the predictive performance of 

classification results. This study may contribute to other studies in proposing the 

voom extensions of powerful machine learning classifiers including support vector 

machines, random forests, etc. We also recommend extending this approach for other 

types of statistical analysis such as clustering analysis. These generalizations may 

allow users to analyze both microarray and RNA-Seq data with similar workflows 

and provide comparable results. 

 Proposed approaches can be used for all types of RNA-Seq based gene-

expression classification studies such as cancer classification, development of RNA-

Seq based diagnostic assays, identification of the types of species, separation of 

developmental differences, cellular responses against stressors, or diverse 

phenotypes, etc. However, they can easily be extended to other sequencing datasets 

including ChIP-seq, metagenome sequencing, Circularized Chromosome 

Conformation Capture (4C) sequencing, etc. 

 For most of the nonsparse classifiers used in this study, feature selection 

should be performed to obtain more accurate results. SVM and RF have the 

capability to deal with the high dimensional data. Sparse classifiers are able to detect 

the relevant subset of features, and performed better in the scenarios with high 

number of genes. We do not recommend a feature selection for nonsparse classifiers. 

A filtering at beginning may be useful to eliminate the noninformative genes. 

 Besides the prediction purpose, voomNSC classifier can be used just to 

identify the potential diagnostic biomarkers for an interested condition. In this way, a 

small subset of genes, that is relevant with the class conditions, can be detected. 

These genes can then be investigated for further analysis, such as discovering the 

other genes which have interactions with these genes. Shrunken differences of these 

selected genes may be related with specific class conditions.   
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 We conclude that PLDA algorithm with power transformation and voomNSC 

classifiers may be the sparse methods of choice, if one aims to obtain accurate 

models for RNA-Seq classification. SVM and RF algorithms are the overall winners 

in nonsparse classifiers. When sparsity is the measure of interest, voomNSC 

classifiers should be the preferred classifiers. Along with its accurate and sparse 

performance, voomNSC method is fast and applicable to even very large types of 

RNA-Seq dataset. 

 For the applicability of the proposed approaches, we developed voomDDA, a 

user-friendly web-based platform. VoomDDA can be accessed from 

http://www.biosoft.hacettepe.edu.tr/voomDDA/ . Users can upload their raw data to 

this platform, and apply all necessary pre-processing, diagnostic biomarker discovery 

and classification steps online. In pre-processing step, users can filter the redundant 

genes from their data using near-zero filtering and variance filtering modules and 

normalize their data using deseq median ratio and TMM methods. For classification, 

they can select voomDLDA, voomDQDA or voomNSC methods. For sparse 

voomNSC method, the web-tool also displays the selected genes, and various plots to 

display their interactions.  

 

 

 

 

http://www.biosoft.hacettepe.edu.tr/voomNSC/
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SUPPLEMENTARY FILE - 1:  

USER GUIDE of VOOMDDA WEB APPLICATION 

To provide the applicability of the developed approaches, a user-friendly web 

application is proposed. VoomDDA is an interactive platform, which can be accessed 

from http://www.biosoft.hacettepe.edu.tr/voomDDA/ . VoomDDA includes the 

sparse voomNSC, non-sparse voomDLDA and voomDQDA algorithms 

accompanied with several interactive plots (Figure S1.1). 

 

 

Figure S1.1. Introduction page of VoomDDA web-tool 

 
 To start analysis, users are required to upload their data as described in the 

'Data upload' tab. Two example datasets are provided for researchers to test the tool 

and prepare their data in a suitable format. After uploading the data, the data will 

appear on the screen in a matrix form (Figure S1.2). Next, users can click on the 

'Analyze Tab', pre-process their data and perform the classification analysis. 

VoomDDA consists two filtering (near-zero and variance filtering), and three 

normalization (none, deseq median ratio, TMM) modules. A data summary, training 

summary and predictions will appear in the screen based on selected analysis 

modules (Figure S1.3). If voomNSC is the selected classification model, selected 

subset of genes and a heatmap plot will be provided, as well in the same screen 

(Figure S1.4). A detailed tutorial is given in the Manual tab of the application. 

 

http://www.biosoft.hacettepe.edu.tr/voomNSC/


 

 

Figure S1.2. Data upload screen of VoomDDA web application 

 

 

Figure S1.3. Analyze module of VoomDDA web application. Users can select the 
appropriate pre-processing method and the classifier on the left side and obtain data 

summary, training summary and predictions on the right side. 



 

 

Figure S1.4. Selected genes and a heatmap plot for voomNSC algorithm 


