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ABSTRACT

In the present work, the positivity of the differential operator with the non-
local condition in Banach spaces is established. The structure of fractional spaces
generated by this differential operator is investigated. In applications, theorems
on well-posedness of local and nonlocal boundary value problems for parabolic and
elliptic equations are established.
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Bu caligmada, Banach uzayinda yerel olmayan kosullu diferensiyel operatoriin
pozitifligi elde edildi. Bu diferensiyel operator tarafindan iiretilen kesirli uzaylarin
yapist aragtirildi. Uygulamalarda, parabolik denklemler icin yerel ve yerel olmayan
sinir deger problemlerinin iyi konumlanmighgina ait teoremler elde edildi.
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CHAPTER 1

INTRODUCTION

Several problems for partial differential equations can be considered as abstract
boundary value problems for first and second order ordinary differential equations
in a Banach space with a densely defined unbounded space operator. The posi-
tivity of differential and difference operators in Banach spaces is important in the
study of various properties of boundary value problems for elliptic, parabolic and
hyperbolic partial differential equations, of stability of difference schemes for par-
tial differential equations and summation of Fourier series converging in C'-norm
is well-known (see, for example, (Krein, 1968), (Fattorini, 1985), (Ashyralyev and
Tetikoglu, 2015a), (Sobolevskii, 2005), (Ashyralyev and Sobolevskii, 1994), (Ashyra-
lyev and Sobolevskii, 2004)).

The positivity of a wider class of differential and difference operators in Ba-
nach spaces has been studied by many researchers (see, for example, (Alibekov and
Sobolevskii, 1977), (Ashyralyev, 1991), (Ashyralyev et al., 2014b), (Ashyralyev and
Sobolevskii, 1984), (Agmon, 1996), (Solomyak, 1960), (Danelich, 1989b), (Ashyra-
lyev, 2006), (Simirnitskii and Sobolevskii, 1981b), (Simirnitskii and Sobolevskii,
1982b), (Agmon and Nirenberg, 1963), (Agmon et al., 1959), (Agmon et al., 1964),
(Alibekov, 1978), (Alibekov and Sobolevskii, 1979), (Alibekov and Sobolevskii, 1980),
(Danelich, 1987a), (Danelich, 1987b), (Danelich, 1989a), (Stewart, 1980), (Solomyak,
1959), (Simirnitskiih, 1983), (Sobolevskii, 1977), (Sobolevskii, 1971), (Simirnitskii
and Sobolevskii, 1982a), (Sobolevskii, 1988), (Simirnitskii and Sobolevskii, 1964),
(Sobolevskii, 1997), (Sobolevskii, 1975), (Ashyraliyev, 2012), (Neginskii and Sobolevskii,
1970), (Simirnitskii and Sobolevskii, 1981a), (Ashyralyev and Agirseven, 2014a),
(Ashyralyev, 2003)).

Definition 1. An operator A densely defined in a Banach space F with domain



D(A) is called positive in E, if its spectrum o4 lies in the interior of the sector of
angle ¢, 0 < ¢ < m, symmetric with respect to the real axis, and moreover on the
edges of this sector S; (¢) = {pe’? : 0 < p < oo } and Sy (p) = {pe™ : 0 < p < oo},
and outside of the sector the resolvent (A — A)~" is subject to the bound (see,
(Ashyralyev and Sobolevskii, 1994))

M
1+ [\

1A =2 =

The infimum of all such angles ¢ is called the spectral angle of the positive
operator A and is denoted by p(A) = ¢(A, E). The operator A is said to be strongly
positive in a Banach space E if (A, E) < 7.

Throughout the present thesis, M will indicate with positive constants which
can be different from time to time and we are not interested in precise. We will
write M («, 3, -+ ) to stress the fact that the constant depends only on «, 3, - - .

For a positive operator A in the Banach space E, let us introduce the fractional
spaces Enp = Eqp(E,A), (1 < p < 0),Ey = Eano(E,A),0 < a <1 consisting of
those v € E for which norms

o0 v

A
Iole., = { [ O lag+ a7, S

0
H’UHEQ = ili% A\ HA()\ + A)_lvHE
are finite, respectively.

The structure of fractional spaces generated by positive differential and dif-
ference operators and its applications to partial differential equations has been
investigated by many researchers (see, for example, (Ashyralyev and Yaz, 2006),
(Ashyralyev and Tetikoglu, 2014), (Tetikoglu, 2012), (Ashyralyev and Yenial-Altay,
2005), (Ashyralyev and Agirseven, 2014b), (Ashyralyev et al., 2014a), (Ashyra-
lyev and Kendirli, 2000), (Alibekov and Sobolevskii, 1977), (Ashyralyev and Ak-
turk, 2015), (Triebel, 1978), (Semenova, 2012), (Ashyralyev and Yakubov, 1998),
(Bazarov, 1989), (Nalbant, 2011), (Ashyralyev and Kendirli, 2001), (Ashyralyev
et al., 2014c), (Ashyralyev and Karakaya, 1995), (Ashyralyev and Taskin, 2011),
(Ashyralyev and Prenov, 2012), (Ashyralyev and Prenov, 2014), (Ashyralyev and
Sobolevskii, 1988), (Ashyralyev and Tetikoglu, 2015b), (Tetikoglu, 2015), (Ashyra-
lyev and Nalbant, 2016)).



Important progress has been made in the study of positive operators from the view-
point of the stability analysis of high order accuracy difference schemes for partial
differential equations. It is well-known that the most useful methods for stability
analysis of difference schemes are difference analogue of maximum principle and en-
ergy method. The application of theory of positive difference operators allows us
to investigate the stability and coercive stability properties of difference schemes
in various norms for partial differential equations especially when one can not use
a maximum principle and energy method. However, the positivity of differential
and difference operators is not well-investigated in general. Therefore, the investi-
gation of positivity of differential and difference operators in Banach spaces and its
applications to partial differential equations is an important subject. Finally, we
should mention that the positivity of difference operators with nonlocal conditions
is investigated only in one-dimensional case. In (Ashyralyev and Karakaya, 1995),
A. Ashyralyev, I. Karakaya considered the differential operator A* defined by the
formula

A*u = —a(:p)% + du (1.1)
with domain D(A%) = {u € C@[0,1] : uw(0) = u(l),u' (0) =« (1)} . Let a(z) be the
smooth function defined on the segment [0,!] and a(x) > a > 0. It was proved that
A" was the strongly positive operator in C'[0,1]. For a € (0, +), the norms of the
space E,(C0,1],A*) and the Holder space C?*[0,1] were equivalent. It follows
that A® was the strongly positive operator in C?* [0, 1] .

In (Ashyralyev and Kendirli, 2000)- (Ashyralyev and Kendirli, 2001), A. Ashyra-

lyev and B. Kendirli considered the difference operator A7 defined by formula

& h Upy1 — 2Up + Up—1 M-t h M
Aju" =< —a(xy) 2 + duy, yut =A{upty ,Mh=1 (1.2)
1

with ug = ups, w1 —ug = ups—up—1. This operator was a first order of approximation
of the differential operator A* defined by formula (1.1). They proved that A7 was the
strongly positive operator in Cj,. For o € (0, %), the norms of the space E,(Ch, A7)

and the Holder space C2* were equivalent. It follows that A7 was the strongly

o, . . 206
positive operator in C};°.



A. Ashyralyev and N. Yenial-Altay considered in (Ashyralyev and Yenial-Altay,
2005) the difference operator defined by formula

U —2ui +u M=1
PR IS TETRIN

with ug = upr, —ug +4uy — 3ug = ups_o — 4ups_1 + 3uyps. This operator was a second

cut = {w )Y, Mh =1 (1.3)

1

order of approximation of the differential operator A* defined by formula (1.1). They
proved that A7 was the strongly positive operator in Cj. For a € (0, %), the norms
of the space E,(C}, A%) and the Holder space C?* were equivalent. It follows that
A? was the strongly positive operator in C?°.

A. Ashyralyev considered in (Ashyralyev, 2006) the differential operator de-
fined by (1.1) and difference operator A7 which was a second order approximation
of A* and defined by formula (1.3). He proved that A* was the strongly positive
operator in the space L, [0,1] ,1 < p < oo of the all integrable functions ¢(x) defined
on [0, ] with the norm
1
v

l
Ielon = | [ le @ do
0

Eop(Ly[0,1], A*) = W3 [0,1] forall 0 < 2a < 1,1 < p < oo. Here, WK [0,1] (0 < p <
was the Banach space of all integrable functions ¢(z) defined on [0,1] and satisfying

a Holder condition for which the following norm is finite:

oo+ y) — @)l
HSDHW“[OI / |y|1+pp dydz + H%OHZD[O,Z] ;1 <p<oo.

This fact follows from the equality D(A*) = W} [0,1] for a second order dif-
ferential operator A” in L,[0,l], 1 < p < oo, via the real interpolation method.
The alternative method of investigation adopted in (Ashyralyev and Sobolevskii,
1994), (Ashyralyev and Sobolevskii, 2004), based on estimates of fundamental so-
lution of the resolvent equation for the operator A*, allows us to consider also the
cases p = 1 and p = oco. It follows that A* was the strongly positive operator in
the space sza [0,1] for all 0 < 2a < 1,1 < p < c0. A7 was the strongly positive
operator in the space L, = L, ,1 < p < oo of mesh functions ©"(x) defined on
[0, 1], with the norm

=

"M, = | 22 1" @I

z€[0,l]p



Eop(Lypp, A7) = W2 forall 0 < 2o < 1,1 < p < oo. Here, W}, = W} [0,1], (0 < < 1)

was the Banach space of all mesh functions " (x) defined on [0, ], with the norm:

1
P

+ h(x)l”
[l = | 3 3 ECD T O o | 1 <pce
" mGOl}hye[il]h || ’
Yy

This fact follows from the equality D(Aj) = W2, for a second order differential
operator A} in L, p, 1 < p < oo, via the real interpolation method. The alternative
method of investigation adopted in (Ashyralyev and Sobolevskii, 1994), (Ashyralyev
and Sobolevskii, 2004), based on estimates of fundamental solution of the resolvent
equation for the operator Ay, allows us to consider also the cases p =1 and p = oc.
From that it follows A} was the strongly positive operator in the space szﬁ for all
0<2a<1,1<p<oo.
In (Ashyralyev and Yaz, 2006), A. Ashyralyev and N. Yaz investigated the
differential operator A* defined by the formula
A%y = —a(z )% + du (1.4)

with domain
D(A®) = {u € CP[0,1] : u(0) = u(),u'(0) = u'(1),1/2 < p < 1}. (1.5)

Here, a(x) was a smooth function defined on the segment [0,/] and a(x) > a >
0. They proved that A* was the strongly positive operator in C'[0,[]. For a €
(0, 5), the norms of the space E,(C[0,1], A*) and the Hélder space C?*[0,1] were

equivalent. It follows that A® was the strongly positive operator in C? [0, 1] .

Ashyralyev A., Nalbant N. and Sozen Y. considered in (Ashyralyev et al.,
2014b) the difference operator defined by formula

Ug+1 — 22U + U M=t
e +5uk} cut = {w 3y Mh=1  (16)

Ay "= {_a(xk) 2

1
with ug = up, w1 —ug = uy — un_1, where £ = [%} , [-] was the greatest integer func-
tion. This operator was a first order of approximation of the differential operator A*

defined by formula (1.4) with domain D(A%) = {u € C®10,1] : u(0) = u(p), u'(0) =



W' (1),1/2 < p < 1}. They proved that A7 was the strongly positive operator in C},.
For a € (0, 4-), the norms of the space E,(Cj, A7) and the Holder space C7* were
equivalent uniformly in h. It follows that A} was the strongly positive operator in
o

Finally, a survey of results in fractional spaces generated by positive operators
and their applications to partial differential equations was given in (Ashyralyev,
2015).

In the present thesis, we will study the positivity of the differential operator
A% defined by the formula

A%u(x) = —uge(x) + du(x),0 > 0,0 <z < 1 (1.7)
with domain
D(A") ={ue C?[0,1] : u(0) = 0,u(l) = u(pn),0 < p <1},

where 0 > 0. The structure of fractional spaces generated by this differential operator
will be investigated. We will discuss their applications to theory of local and nonlocal
boundary value problems for parabolic and elliptic differential equations.

Let us briefly describe the contents of the various chapters of the thesis. It
consists of five chapters.

First chapter is the introduction.

Second chapter considers the differential operator A* defined by formula
(1.7).
We will study Green’s function of the differential operator A* defined by formula
(1.7) . Therefore, we consider the resolvent of the operator —A?®, that is, we consider

the operator equation

A*u+du=f (1.8)
or

d*u(x)
dx?

w(0)=0,u(l) =u(pn),0<pu<l.

+ du(z) + Au(z) = f(z),0 <z <1, (1.9)

Pointwise estimates for Green’s function of the differential operator A* defined by

formula (1.7) are established.



It will be established the positivity of the differential operator A* in C'|0, 1].
The structure of fractional spaces E, (C|0, 1], A¥) will be investigated. It is es-
tablished that for any 0 < o < 1/2 the norms in the spaces E, (C]0,1], A*) and
C?%10, 1] are equivalent. This result is permitted us to prove the positivity of A* in
C?*0,1] (0 < a < 1/2). In applications, we will obtain new coercive inequalities for
the solution of local and nonlocal boundary value problems for elliptic and parabolic
equations.

Third chapter establishes the positivity of the differential operator A* in
L, [0,1]. The structure of fractional spaces F,1(L1]0, 1], A”) will be investigated. It
is established that for any 0 < o < 1/2 the norms in the spaces E, (L]0, 1], A”)
and W2 [0, 1] are equivalent. This result permits us to prove the positivity of A% in
W2 [0,1] (0 < a < 1/2). In applications, we will obtain new coercive inequalities for
the solution of local and nonlocal boundary value problems for elliptic and parabolic
equations.

Fourth chapter establishes the positivity of the differential operator A* in
L, [0,1]. The structure of fractional spaces E,,(L,[0, 1], A*) will be investigated. It
is established that for any 0 < o < 1/2 the norms in the spaces E, ,(L,|0, 1], A%)
and me [0, 1] are equivalent. This result allows us to prove the positivity of A” in
Wp?a [0,1] (0 < @ < 1/2). In applications, we will obtain new coercive inequalities for
the solution of local and nonlocal boundary value problems for elliptic and parabolic
equations.

Fifth chapter contains conclusions.



CHAPTER 2

THE POSITIVITY OF THE SECOND ORDER
DIFFERENTIAL OPERATOR WITH THE NONLOCAL
CONDITION

In this chapter, we consider the differential operator defined by formula
(1.7) We will study Green’s function of this operator. Pointwise estimates for
Green’s function of the differential operator A* defined by formula (1.7) are es-
tablished. The positivity of the differential operator A* defined by formula (1.7)
in C'[0, 1] is established. The structure of fractional spaces E, ~(C|0, 1], A*) will be
investigated. It is established that for any 0 < a < 1/2 the norms in the spaces
FEox(C[0,1], A%) and C?*[0,1] are equivalent. This result permits us to prove the
positivity of A% in C?**[0,1] (0 < a < 1/2). In applications, we will obtain new
coercive inequalities for the solution of local and nonlocal boundary value problems

for elliptic and parabolic equations.

2.1 GREEN’S FUNCTION AND POSITIVITY OF AX DEFINED BY
FORMULA (1.7) IN C'[0, 1]

First, we will construct Green’s function of the differential operator A* defined

by formula (1.7).

Theorem 2.1.1. Let A > 0. Then, the following equation

Au+du=f (2.1)



s uniquely solvable, and the following formula holds:

1

u(r) = (A" + N) 7' f(z) = /G(x, s, A+ 0) f(s)ds, (2.2)

0

where

T
G T, s, ’)\ +6) = —(e 0+A(1—z) e 0+A(14x) e 0+A(1—s) e—\/m(l-‘rs)
(05,42 ) = (™ ) (e )

x[(1 — 6—\/75—1-)\(1—“))—1(1 + 6_\F+A(1+M))—1(6_\/5+x(1—“) _ 6—\/54-)\(1—&-#)) + 1]

1
—VSFA(1-m) —VEFA(1+x) —VEFA1—p)\—1 —VEERA(1Hp)—1
+(e —e 1—e 1+e _—
( I ) S
Ty Ty 1 T Ty
X (e~ O+ Alp=s| _ o= ‘5“(““)) + ———(e" 0+Alz—s| _ o= 5+’\(“7+5)). (2.3)

2V + A
Here,
T — (1 o 6—2\/5—&-)\)—1.

The function G(x,s; A+ 9) is called Green’s function of resolvent equation (2.1).

Proof. We see that problem (1.9) can be obviously rewritten as the equivalent

nonlocal boundary value problem for second order linear differential equation

2
_%+(5+>\)u=f(x),0<x< Lu(0)=0,u(l) =u(u),0< pu<l.

It is well-known that the following formula

u(w) = T {(e7VFP — VIR (¢ VITAD) _ VBT (2.4)
1
1
| —VEFA(1-z) ﬂ/5+X(1+x)) / < —VEFA(1—s) ﬂ/5+X(1+s)> d
(& e — e e s)ds
( W fo
0

—VEFNz—s| _ 6—\/5+X(x+s)) F(s)ds

1
toe [ (
—_— e
2v0+ A )
holds for the solution of the boundary value problem

— S O+ Nu=f(2),0 <z < Lu(0) = pu(l) =y

for the second-order linear differential equation. Applying formula (2.4) and local

condition u (0) = ¢ = 0 and nonlocal boundary condition u(1) = u () = ¢, we get

=T {(e—\/dfm—u) _ e—muw))w _ (6—\/6TA(1—M) . 6_\/m(1+u))
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1

1

—Vo+X(1—s) —VOo+A(1+s5)

X ——— e —e s)ds
24/0 + A / ( > /()

0
1

1
o —Vo+Ap—s| _ —Vi+A(u+s)
+2\/5+—>\/<6 e >f(s)ds.

0
From that it follows that

Y = _(1 _ G—WH(I—u))—l(l + e—\/6+A(1+u))—1(G—WH(I—M _ e—v6+k(1+u)) (2.5)

—VIFA(l=s) _ eﬂ/5+A(1+s)) F(5)ds

1
S
2vVo+ A )

1
-1
_'_(1_6—\/6—0—)\(1—”))—1(1+€—\/5+)\(1+p))—1 T (e—\/6+>\\u—s\ o 6—\/6+>\(u+s)) f(s)ds

2V + A )

Finally, applying formulas (2.4)-(2.5), we obtain formula (2.2). This finishes the
proof of Theorem 2.1.1.

Second, we will study Green’s function of the differential operator A* defined by

formula (1.7).

Lemma 2.1.2. For all 0 < x < 1, the following formula holds
i 1 1
At 0)ds = ——— — e VI 2
[ Gaspin s byis = s - e (26)
0

e*\/mu
0+ A

(6—Fs+x(1—m) _ 6-Fs+x(1+x)) (1 Lem 5+’\(1+u)>_1‘

Proof Applying formula (2.3) and taking the integral, we get

1 1
/G(x, S, U3 A+ 5)d8 = —/ <€_\/m(1_8) _ 6_\/m(1+8)> ds

0 0

% (e—\/6+)\(l—w) _ 6—\/6+>\(1+m)) T
20 + A

y [(1 B 6_\f5+x(1—#)>_1 (1 4 6—\/§+)\(1+u))_1 <€—I5+X(1_#) B e“/‘”X(”“)) X 1]

X (e—fgﬁa—x) _ e—\/5+X(1+x)> (1 _ 6—\/5+A(1—,¢))_1 <1 1 e—\/é-i-)\(l-&-u))_l 1
2v0 + A
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1

i

0

1
y / (e*\/6+)\|/‘75| _ e—\/5+>\(u+s)) ds 1 o~ VI a—s| _ e—\/6+>\(x+s)> ds
0

_ <€—¢m<1_:¢) _e—mmx)) T (1 96 —m+€_zm>
200+ \)

% [(1 _ e—\/5+x(1—“)>_1 (1 i 6—\/§+)\(1+u)>_1 (e‘\/“”(l—“) 1+u)> + 1]

_i_(ef\/éJr)\(lf:z:) _ e*\/6+>\(l+x))<1 _ 67\/6+)\(17M))71(1 + 67\/6+)‘(1+“))71

y 1 (2 L 9V _ —VERA(L—w) | e*\/6+>\(1+u))
2(0 + A)
+ 1 (2 _ 26—\/54-)\:6 _ 6—\/5+>\(1—CC) + 6—\/5+)\(1+$)>
2004+ A)
_ 1 1 e~ Votiz + (e—\/ﬁ-i-)\(l—x) . e—ﬁ(lﬂ))
P 204+ X)

x(1— 6—\/5+A(1—u)>—1(1 +e 5+’\(1+“))_1A

9

where
A=— (1 _ e*m“*“)) (1 + e*m“*“)) -7 (1 e 5“>2
% [e—mu—u) _ e VERA(A) | (1 _ @—m(l—u)) (1 L 5+/\(1+u)>}
12— 2 VIR _ o= VIRAL-p) o= VEEA(L )
— 9~ VoHAu (1 _ e—\/m(l—u)> )

This finishes the proof of Lemma 2.1.2.

Lemma 2.1.3. For all A € R, = {\ : JargA| < ¢, < 7/2}, expressions 1 +
e VOTAU+R) ] — o= VOHAI=1) gnd 1 — e~ 2V are not equal to zero.

Proof Let A = pe’¥ = pcos + isin . Then,

§+A=08+pcosp +ipsinp = |54+ A e

64+ X = /02 + 2pcosp + p2 > 1/82 + A%,

Therefore, (6 + A\)"/? = ‘(5 F AR 2 (5 + NP = 0+ AP ‘/75 Here, tant) =

—6J’:;TO‘§¢ < tan . From that it follows | + /\|1/2 > (6% + |/\|2)1/4and we have that

and

‘(5 +A) 1/2‘ Z 52 + || )1/ %.Thus, using the triangle inequality, we obtain

‘1 —e2 HA’ >1- ‘6_2 HA’ >1-— e_2<52+‘)‘|2)1/4§ >0
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Similarly, |1+ e~ VorAl+n

>0 and (1 _ eVFR-w| 5 0. Lemma 2.1.3 is proved.

Lemma 2.1.4. For any A € R, = {\ : |arg)\| < ¢, < 7/2}, p € [0,1) and

x € [0, 1], the following pointwise estimates hold

G(z, 5, 3\ + 0)| < MG—WHAP)M@I%S\ (2.7)
9 7/’[/7 —_ 2 1/4
(62 +|A%)
for0 <z < HT“ and
G (z, 8, 11; A+ 0)]

,52+/\21/4£1,+,
e () TR ) g < s <

M (9, 1/4 3
< W ¢ 67(52+\>\|2) 72(1fm+sfﬂ)7 p<s<ax+ qul, (2.8)
+
\ 6*(62+‘)\|2)1/4§‘x7-§|7 T+ “Til <s<1

forHT“gzgl.

Proof. Let A=min{2 —z —s,1 — x4+ |u — s|, |z — s|}. First, we prove that

2—x—s>|x—s| (2.9)

for any x, s € [0, 1]. Actually, we have that 2s < 2. By using properties of inequality,
we get

s—xr<2—s—u. (2.10)

Since 2x < 2, it follows

rT—s<2—1x—s. (2.11)

From estimates (2.10) and (2.11), it follows (2.9).

Applying (2.9), we obtain that min{2 —x — s, |x — s|} = |z — s| and A = min{1 —
T+ | —s|, [ — s}

Second, we obtain A. We consider two cases: 0 <z < HT“ and HT” <z <l1.
Let 0 <z < L% for any s € [0, 1].

Assume that 0 < s < p. Then, | —s| = p—s and A =min{l —x+ pu— s, |z — s|}.

Since x < HT“, we have that

r—s<l—x+4+pu—s. (2.12)
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By adding inequalities s < 1 and s < p side by side, we get 25 < 1 4 p. Then,
s—x<l—x+4+p—s. (2.13)
From estimates (2.12) and (2.13) it follows
lt—s|<1—x4p—s. (2.14)

Assume that ¢ < s < 1. Then, |p—s| =s—pand A=min{l —x+s— u, |z — s|}.

Since 1 < 1, adding s — x both side, we get
p+s—r<l+s—=zx

or

lzt—s|=s—ao<1—x+s—pu.
For s > z, we have that |x — s| = s —x and
lt—s|<1—2+4+s—p. (2.15)

Let s < z, then |x — s| = z — s. By adding inequalities p < s and x < HT“ side by

side, we obtain

1
r+p < % + s.
Therefore,
20 —2s <14+ pu—2p
or

r—s<l—x+s—p. (2.16)

From estimates (2.15) and (2.16), it follows
lt—s|<1—2x4p—s. (2.17)
Using estimates (2.14) and (2.17), we get

A=min{l —z+ |p—s|,|x —s|} = |z — s (2.18)
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for any 0 < z < £ and s € [0,1]. By Lemma 2.1.3 and estimate (2.18), we have

the following estimate

2 2\1/4 /3
G, 5. A+ 8)) < O -(smai) Y P (2.19)
(52 + AP

foranyOSxSHT“andSE[O,l].
Let 1—? <z <1 for any s € [0,1]. Suppose that 0 < s < u. Then, |z — s| =
r — s and we have
20 > 1+ p,
r—s>1+pu—x—s.
Then,
A=1—-a+p—s. (2.20)

Assume that g < s < 22 Then, |z — s| = 2 — 5. Since
l—z+s—p=x—s,

2s =204+ p—1,

Y et
S=x+ 5

we have that

l—xz+s—p<z—s=|r—s|

for,ugsgx—i—’%land

l—o+s—pu>z—s5=|z— s

for  + £ < g < & Therefore,
2

l—z+s— ) <s<z+
a a (2.21)
<1

w‘—‘r NF
"E

|.T - Sl ) T+ “ S
Assume that HT“ < s < 1. For x > s, we have that
o= sl =z —s s =s—p.

Applying inequalities x < 1 and HT“ < s, we get

1
x+%§1+s.



Then,
20+ 1+ pu<2+2s

or

lz—sl=0—s<1—a+s—pu.
For x < s, we have that
|t —s|l=s—x,|u—s=s—p.
Applying 1 < 1, we obtain
p+s—r<l4+s—=zx

or

lzt—s|l=s—ao<1l—x+s—pu.
From estimates (2.22) and (2.23) it follows
lt—s| <1—2+4s—pu.
By using (2.20), (2.21), and (2.24), we get

(

l—xz4+p—s, 0<s <y,

|z —s| :c—l—’%lgsgl.

\

A= 1—x+s—u,p§s§x+“771,

15

(2.22)

(2.23)

(2.24)

(2.25)

for any 2 < z < 1 and s € [0,1]. Lemma 2.1.3 and formula (2.25) yields the

2

following estimate

M
Gl s A+ 8)] < — D000

( 6_(624"')“2)1/4%(

1/4
v e—(52+|/\\2) %(1—%5—#)7 .

IN

p=s

for any HT“ <z <1 and s € [0,1]. This finishes the proof of Lemma 2.1.4.

(52 + |)\|2)1/4

1— —
T 0 < s <

(82422 -
e~ (P HAR) gl 5‘,x+”71§5§1
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Lemma 2.1.5. For any A € R, = {\ : |arg\| < ¢, < 7/2}, p € [0,1) and

x € [0,1], the following estimate

/|G(x,s,u;)\+5)|ds < M (2.26)

1s valid.

Proof. Let 0 <z < HT“ for any s € [0,1]. Then, applying (2.19), we get

: 1
2 2\1/4 /3
/|G(x,s,,u;>\+6)|ds < M/e(é +HAPR) %‘x*‘s'ds

1/4
(82 + A
1
_ ( M,y (0, 1) 1/4 /6 (82+A1%) /4 A2 (a—s d8+/ () R (5-a) g
02 + |A%) 4 J
M2<57ﬂ“)

Y 2.27
GRS 220

Estimate (2.26) for this case follows from the last estimate and the following in-

equality
1 M;(0)
S T (2.28)
(62 + |A]%) +[Al
Let 12 <z <1 for any s € [0,1]. Then, from (2.8) it follows that
1 1
/\G(a: s, 3\ + 0)| ds < % /e—(52+|A|2)1/4‘f(l—zﬂt—s)ds
) 9 ’ — 2
0 @2+ |9
‘T+MT71 1
i ey e
I 1'+“T71
Ms(o

- (62 + ’)\‘2)1/2.
Estimate (2.30) for this case follows from estimate (2.29) and inequality (2.28). This

ends the proof of Lemma 2.1.5.
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Lemma 2.1.6. For any A € R, = {\ : |arg\| < ¢, < 7/2}, p € [0,1) and
z € [0,1], the following estimate for the derivative of Green’s function of resolvent

equation (2.1) with respect to x holds

2 2\1/4 /3
(G, 5, 1 A+ 8)] < M (8, p)e (P el (2.30)

Iip
for0 <z < 5

|G$(x7 S, 1 A+ 5)' < M3(67 :u)

,52+)\21/4ﬁ1,+,
e () TR g <5 <

% 67(52+\)\|2)1/4§(17:v+87u)’ §< s <t (2.31)

1/4
67(62+\)\|2) %\xfsh

for HT“ <z <l1.
Proof. Using equation (2.3), we get

Gx(;c’ S,y A+ 5) = _Z(efww)\(lfx) 4 e*ﬁ(lﬂ))(ef\/mufs)

7\/6+/\(1+s))
2

— €

X [(1 _ G—M(l—u))—l(l + e—\/m(l-i-u))—l(e— SN (1—p)

+%(e\/6+)\(1x) + 67\/6+/\(1+x)><1 o 67\/6+>\(17u))71(1 + e*\/5+)\(1+,u))71

— e VORAH)y 4 1]

K (eI n=sl _ =VEERGa)y | L (VR an) | vy (2.32)
2

for z — s < 0. If z — s > 0, then using equation (2.3), we get

T
Gx(l’,s,/ub; \ -+ 5) _ _5(6—\/6—&-)\(1—3:) + e—\/6+>\(1+w))(6—\/6+>\(1—s) . e—\/é—l—)\(l—i-s))

X[(l o e*\/6+)\(1ﬁu)>71<1 + ef\/6+)\(1+u))71(67\/6+)\(1ﬁu) _ e*\/6+)\(1+,u)) + 1]

+%(e—\/6+>\(1—ax) + e—\/5+)\(1+a:))(1 . e_‘/6+’\(1_“))_1(1 +e 5+/\(1+u))—1

—_

X(e—\/6+/\|,u—s| . 6—\/5+/\(u+s)) + _(_6—\/54-)\(9&—5) + e—\/é-&-)\(x-l-s))‘ (233)

\)

There are two possible cases: 0 < z < 1—’;H and 1—;H < x < 1. In the first case, we

will estimate (2.18). By Lemma 2.1.3 and estimate (2.18), we have the following
estimate from (2.32) and (2.33).

2 1y 2\ /4 V2
|G (2, s, 13 A+ 6)| < My (0, ,u)(f(‘S ) sl (2.34)
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In the second case, from (2.32), by Lemma 2.1.3 and formula (2.25) we have the

following estimate

|G (@, 5, 1; A+ 0)]

1/4
o~ (2+IA%) T2 1zt p—s) 0<s<p,
/
< M) { e~ (PHAR) T E )y <<yt (2.35)

(52 N\ _
6(6+|)\|) 2|ws|7x+y1§8§1.

Lemma 2.1.6 is proved.
Third, the positivity of A* in C'[0, 1] is investigated.

Theorem 2.1.7. For all A € R, = {)\ : |arg\| < p,p < 7/2}, the resolvent
(M + A*)~1 defined by formula (2.4) is subject to the bound

N ~ M(p,0)
1T+ A o100 = T+

Proof. Using formula (2.4) and the triangle inequality, we get

<s<1

)| g/\a(a:,s,u;A+6)|dsmax £ ()l
for any x € [0,1]. So, we get

max |u(z)] < max / (G, 5, A+ 0) ds [ oo

z€[0,1] T z€[0,1]

Then, we have

. < M(p,9)

From that we obtain

T —1 M(SO, 5)
||(A + )\> Hc[071]—>c[0,1] = T|/\|

This is the end of Theorem 2.1.7.
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Clearly, the operators A% and its resolvent (A + A%)~! commute. Thus, from

the definition of the norm in the space E,(C[0, 1], A*) it follows that

I3+ 47 )< A+ a7

—1
) HEQ(C[O,l],Az)—>Ea(C[D,1],AZ 0,1]-Cl0,1]

Hence, by using Theorem 2.1.7, we obtain the positivity of the operator A* in the
fractional spaces E,(C|0, 1], A®).

2.2 THE STRUCTURE OF FRACTIONAL SPACES E, (C[0, 1], AX), POS-

o 2a

ITIVITY OF AX IN C [0, 1]

o 2a

Now, we will study the positivity of A* in C' [0,1]. We have the following
theorem.

Theorem 2.2.1. Let « € (0,1/2). Then, the norms of the spaces E,(C]0,1], A®)

o 2a
and C [0,1] are equivalent.

Proof. For any A > 0, we have the following equality

AN+ AT () = fz) = AA + A7) f(@).
By formula (2.2), we can write

1

AN+ AT (2) = f(x) — /\/G(x, S, A+ 0)f(s)ds

1

f(x) — )\/G(x, S, s A+ 0) f(s)ds. (2.36)

0

1) A
b AC RS s

From equation (2.6) it follows the following formula

1

1 1
_ o Nt ) —Vé+iz
KR PA——
0
VX
+€ o (ef\/Hilem) — e"/muﬂ))(l + eiﬁ(lﬂ))il- (2.37)

0+ A
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Using formulas (2.36) and (2.37), we get

5
A A7) ) = 5 )+ i [ (2.38)

_'_e—\/6+)\,u(€—\/6+)\(1—m) _ e—\/é—i-)\(l—l-x))(l L 5+>\(1+u)>—1} @)

+A [ Gz, s, ;A +9) (f(z) — f(s))ds.

O\H

Then,

a Az xr\— 5)\04 )\aJrl — T
N A A+ AT () = = )+ [e VEEX

_‘_e—x/é-ﬁ-/\u(e—\/ts—i-)\(l—x) _ e—\/6+)\(1+:1:))(1 X e_*/H)‘(H“))_l} (@)

+)\°‘+1/G(as, S, A+0) (f(x) — f(s))ds

= Pi(z) + Py(z) + P3(x),

where
ON«
O+ A

Pi(z) = f(x),

)\a+1
Py(z) = P [e_\/mm + VIR VIRA(-T) _ o—VEFA(14a))
x (1+ e_\/m(l'i'#))—l f(z)

Y

Py(z) = A7 / G, 5,13+ 8) (f(z) — F(5))ds.

o 2

Using the definition of norm space C' [0, 1] and ’\D;i# < 1, we can write

501)\(151—11
P, < < ¢ < §¢ 020
@) < oy )] < 80 mas |F@)] < 8 [l

for any = € [0,1]. Then,

Py(x)] < 6°
max [Pu()] < 0%

02
C [01]

or

1Pllegosy < 6% 17 llgze - (2:39)

We have that
)\a+1

P@) =55

e VPR [f(x) — f(0)]
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+5/\j—+;\€\/5+7/\(1+,ux)(1 + 6*\/5+7>\(1+,u))71 [f(:c) _ f(l)]
)\aJrl

+6+A€—M(1+y+z)(l 4o 5+)\(1+p))—1 [—f(z) + f(1)]
At —VE+A(14p—=) —VEFX(14p) -1

e VIR (g )L () — f(0)

)\a—l—l

_ —VEFA(Ltpta) —VEFA(1+p) -1
S (1+e ).

Then, using the triangle inequality and the estimate p¥e P! < tMa, p > 0, we can

write

Pl (525) eSO

) 5_1_)\ a+1 _\/ﬁ(lﬂt JB)(1 e S+ (1+u)) 1M (1 _l,>204
(

) 5 + )\ a+1 —\/54-7/\(1-&—#-1-13)(1 Te M(l‘Fﬂ))_lM (]_ — x)Qa
(

a+1
) 5 + )\)a+1 —\/6+)\(1+p+x)(1 + e—\/5+/\(1+u))—1 ‘f(ﬂ) - f(O)‘ 2«
Iu2a

+
A
[«%)
-|—>,
>/

)\ a+1 N
' (—5 T A) (65 A)H VIR (4 o VBT ) L (1)

ore + M|[flloza +MIf

o 2a

S M| fllgze A+ MIf
C

[0,1] & 0] & o] & 0]
1
+£[%)1( @)l m < M Hf”ém[o 1]
for any x € [0, 1]. Thus,
||P2||c[o,1] <M ||f”82a[071] : (2.40)

Now, we will estimate P3(x). From the estimate (2.19) for 0 <z < pand p <z <
1+” , we get
1

IPy(a)] < A+ / Gl 5. i M+ 8)| | f(x) — £(s)]ds

0

% [ e )~ o) ds

évw fi)ff 7 / ) Bl ) gy 0L
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1

5/1Aa+1 52)\ /fxs 20

<M Wl // )l s,
0

Using the substitution y = (6% + || )1/4 ‘/75 |z — s|, we obtain

)\a—i—l ® _y oo
|P3(z)] < Ma || f]] .2 i ds
¢ [0” 32+ N%) 2 4

AT (200 + 1)
= <Myl T a4 D).

< M. 0 20r
Sl o

Using estimate (2.8) for £ < 2 <1, we get

)< A 1/G z, s, A+ 9) (f(x) — f(s))ds = Psi(z) + Pso(z) + Pso(z),

where
_ My(6, At f _(62+|A|2)1/4ﬁ(1—:c+u—s)
Py (x) = 1 [ € 2 x) — f(s))ds,
@ (62+w>// () = £(5)
M0, At r —(24A2) L () _
Py(z) = i | ¢ x s5))ds,
Y / (F(x)~ £(s))
My (6, At — (8242 L (s—a) B
Py(z) = —14 € 2 (f(z) = f(s))ds.
(52 + A1) /

Let us estimate Ps(z).

M1(5 M))\a—i—l 1

ol = e [ € P 5w 100 10 = S

By triangle inequality, we have

M (8, At
( |A| )1/4

Using the definition of norm, the following inequality holds

Po(z)] < / e~ (B4) TR0 [ £y — F(1)] 4 () — (5)]) ds.

1

Ml((sau)/\aJrl — (62 \VAE (s e
m Hf“éZO‘[O , /6 (6 +IA| ) 5 (1—z+p )(1 —ZL')2 ds
(62 +|A%) Sl

| P31 ()] <

m
+/e(52+)\| )R et ) — s)*ds
0
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In
a+1
< Ml((;a M)A i Hf” (52+\)\|2)1/4§(1—x)(1 _ x)Qa /e—(52+>\|2>1/4\§§(ﬂ—8)d8
(52 1 C’ 0,1]
(82 + [A]%) I J
m
+e‘(52+”2)1/4§(1_m)/e_(52+|k|2)1/4¢2§(“_8)(u — 5)**ds
0

Let
I = €—<§2+|)\| ) ‘f( :r)(l _ x)Qa

Y

o
[2:/6—(62+|>\) 2y =) ds,

0

i
[3 _ /€—<62+|)\ ) 1/4 ‘f(l —z+p— S)(;u_ S)Qads.
0

Hence, by the inequality e~ < 0<6 <1, we get

(at )9’
(1—x)% B M
9 1/4\/§ 200 9 o 2a/4 "
(24 2B) 2 -2)" @+ 1)

I <

Taking the integral, we have
1/4 /5
1 o ()
i i

< ,
(624 |A]2) /" 2 (52 + AP

I, <

and for y = (02 + |A\[*/* \/75(” —5)

I < M2 _ / ey ds < MF(2a2+ 172 < M2 _
(02 +[AF) ¢ (@2+AF) © () T

1/4
Consequently, if we say e~ (FHAP) T F 1-a) < 1, I'2a+1) < 1 and using the

estimates for [, I5,I3 the following inequality holds

M, (6, )Xo+t M M M
Pl = (—)/' o0 | e pf) T @ =
(62 + AP MO AT (24 A1) (62 + |AF)
)\a—i—l
| Pa1 ()| < Ma(6, ) || f| o2a —Ha<Mz(5 ) L] g2
C [0, (52+’)\‘ ) [0,1]

Let us estimate Psy(x).

]\41 (5 ,u))\O"H r.

Pyy(z) = - e—(52+|,\\2)1/4§(x—s) (f(z) = f(s))ds,
(2+ IAP)" /
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| Paa(z)] <

X My (6, pr) N+ /e—(62+A|2)1/4é§(x—s) (z — 3)2a ds
¢ 0] ( + A )1/4 '

Using the substitution y = (0% + \)\|2)1/4 ‘/75 (x —s), we obtain the following in-

equality
)\a+1 p )
| Paa(z)] < My ||f”8,2a PN —/G_yy “ds
N L Y B N
)\a+1 x )
< M, ||f||82a01 PN /e_yy “ds
M AP

AHT (2 1
g 2O gl T a1,

Let us estimate Ps3(z).

< M, |

_ M6, At / — (8242 (s—a)
(z) T )1/ / (f(z) — f(s))

So,

1

M a+1

| Pay ()] < M || f]] 220 L)/\M/e(auﬂ) V2 (5-a) = s ds.
C [0, ( Y ) /

Using the substitution y = (6% + |/\|2)1/4 ‘/75 (s —x), we have the following inequal-
ity

)\a+1 o
Pyy(2)] < Mo [[f]] 20 ————Tg/a%mw
C [0,1] (52+|>\|2) 2

AT (2 1
g 2O gl T a1,

Then, we can write the following

< M,

Py(2)| < P. P. P
;&ggﬂl (z)] m[%XI 31 (2 >|+;g[g§]| 32(x)|+g[g§]l 33()|

or

HP3HC[O,1] < M(a)llf

Using estimates (2.37),(2.39), and (2.40), we get

o2 . 2.41
C [0,1] ( )

max [AN*AT(\+ A" f(@)| < M@, ) [ fll oz + M (@) || f] o2a (2.42)

x€[0,1] C [0,1] C [0,1]



25

for any A > 0. Hence,

1Al £ ccto.),40) < ML

02(1

0,1
Now, let us prove the reverse inequality. For any positive operator A* in the Banach

space, we can write
oo

— /Aw + A2, (2.43)
0
where [ is the identity operator.

From formulas (2.2) and (2.43) it follows that

(A + A") AT\ + AT f(2)dA

1

= //G(x, 8, 13 A+ 0) A5 (X + A%) 71 f(s)dsd.
0 0

Consequently,

1

fla+m)— / / (Gla+ 705, A+ 0) — Gl s, A+ 8)] A°(A+A%) 7 f(s)dsd
0 0
o9 1

_ /Aa / Gz 475 1 A+ 8) — G, 5, j1: A+ 8)] A A% (A + A%) "L f(s)dsd\.

" " (2.44)

Hence,

[z +7) <(/ / x+7,s,u;A+5>G(x,s,u;Ha)dsdA)

X ||f||Ea(C[o,1},Az) )

Let

/)‘a/\G($+T,SaM;)\+5)—G(x,s,u;)\+5)|dsd>\
0 0

:7-—20‘/)\_“/|G(x+7',s,,u;)\+5)—G(%Sa,u%)\"‘(mde)‘
0 0
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[e's) T+T

+T_2a/>\_a/|G(Z’+T,S,M;>\+5)_G(x7$7ﬂ’;)\+5)|d8d/\

0

_|_7—20‘/)\0‘/|G(x+7',s,,u;)\—|—5)—G(%Sa/ﬁ§)\+5)’d3d>‘
0 T4+T
(') r T+T
= [ [ 16 s i+ 8) dzdsay
0 0 =z
e’} T+T

+7-2“/)\a / |G(x + 7,8, 15A+0) — Gz, 8, 15\ + §)| dsdA
0

(e’ 1 x+7

+T—20‘/)\“"/ /IGz(z,,s,u;AJrfF)ldzdsdA
0 T+T T
= T1 + T2 + T3‘
Here,
T T+T
TIZT_M/ //|G 20,8, 5 A+ 0)| dedsd),

0

o) z+T

T2—7—2a/>‘_a / Gz + 7,8, 1A+ 06) — Gz, s, ;A + 6)| dsd,
0

o0 1 z+7
Ty = T_QQ//\_Q / / |G=(2, ;5,15 A+ 0)| dzdsdA.
0 x+T T

Then, for any x,7 € R™ , we have that

[f(z+7) = f(=)]

—2a <T HfHEa(CM[o,u,Az).
7]
Now, we will prove that
Mo
r< MO (2.45)
2a (1 — 2a)

We will estimate 17,75 and T3. First, let us estimate T7.

x T+T

T =1 / //|G (2, 5,413 1+ 8)| dedsdA

T T+T

0
/ a/ / o= () Ll gy
0 0 =



T T+T 00

_2a/ / / Ao W2 sl A dds,
0 =z O

oo
o M2,
:/)\ ap A5 sl gy,
0

where

By changing variable

we get

Then,

z— 8 2pd; _
/ ’ ‘ 20¢ —pl |Zp p |2 _ |Z . S|2a 222—a/e—pp1—2adp
2

= |z — s/ 7?22 (2 — 2a) = My |z — s>,

From that, it follows

T T+T

Ty < Mﬁh/ / (z — 5)** 7 dzds
0 =z

T+T

2 (=)™
< [ B
7_—2a7_2a MQ

:M pu—
‘A—2a)2a  (1-2a)2a

Second, let us estimate T5.

[e%¢} x+T

TQZT—M/)\_Cv / |G(x 47,8, ;A\ +0) — G(x, s, u; A+ 6)| dsd
0

[ee) T+T 2 2 1/4\/5 2 2\1/4 /3
2C!/ / 6_(5 +HAP) TR s 6_(5 +HAP) TR s
_ Ao

= + dsd\
1/4 1/4
5 (2 + [Af) (82 + A
M [e’¢) x+T
72 AO‘/ —VARlzms] | o= VAZletr=sl| g
S |

0 T
M e’} x+T
= r /)\ a/ ff(s a:)+ —ff(z+7 s]dsd/\
r J

T

27

(2.46)

(2.47)
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=Ty + Tho,

where

T

we have .
2 a
e X 4pdp2’)\ (a+1) _ %
(s — ) (s —x) pret
Then,
x+T 00 x+T 00 2a+1
o, VA (s-a) e Ppdp
Ty = / / Z5> d\ds < My172 / / 2a+1 - x)st
r+T 0
= M7 / (s —2)* " ds / e Pp =2 dp
T 0
—2a,2a
< M2T U %
200 200
Similarly, by changing variable,
2
\/Xg(:v—l—T—s) =p,
we get
T+T 00
T21— // gV 7-9) g\ s
T4+T 00 2a+1 —p
d
- //“gl P,
at (z4+71—35)
T+T o]
< My % / (z+71—35)"ds / e Pp —2“dp
T 0
_ M27.—2a7_2a _ %
2c 2a
Thus,
T, < M2
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Finally, let us estimate Tj.

0o 1 z+7

T3 = ’T|2a/)\_a / / |G.(2,, 8, ;A4 0)| dzdsd\

0 otr

o0 1 a4r

0 otr @

1 247 oo
etr w0
Using (2.46), we have
1 a4r
Ty < MyT— 2 / /(s — 2)** 2dzds
T+T T
< M2 7T(x 1=zt N
1 -2«

Y (2.48)

(1-2a)2a (1—2a)2a
Finally,

Theorem 2.2.1 is proved.
From positivity of A* in F, o, and Theorem 2.2.1 it follows the positivity of

o 2a

A*on C [0,1].

o 2a

Theorem 2.2.2. The operator (A + A®) has a bounded inverse in C' [0,1] for any
A >0 and the following estimate holds:

M©G) M

A4 A7) 020 .
H( + A7) c [o,1}—>02 01 ~ 2a(l —2a) 5+ A

2.3 APPLICATIONS

In applications, we will obtain new coercive inequalities for the solution of

local and nonlocal boundary value problems for parabolic and elliptic equations.
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2.3.1 Parabolic problems

First, we consider the initial boundary value problem

;

—% — S 4 ult, ) = f(t,2),0 <t < T,z €(0,1),

u(0,2) = ¢(x),z € [0,1], (2.49)

u(t,0) =0,u(t,1) =u(t,n),0<pu<1,0<t<T.
Here, p(z) and f(t,z) are sufficiently smooth functions and they satisfy compati-

bility conditions which guarantee problem (2.49) has a smooth solution u(t, x).

Theorem 2.3.1. Let 0 < 2a < 1. Then, for the solution of the initial value problem
(2.49), we have the following coercive stability inequality

Hut”c([o,ﬂé 01) *ll (OTL&MH[O’”)

< M(a) |190||52a+2 +IA (

0,77, c "o, 1])

The proof of Theorem 2.3.1 is based on Theorem 2.2.1 on the structure of the
fractional spaces E, = E, « (C'[0,1], A%), on the Theorem 2.1.1 on the positivity
of the operator A”, on the following theorem on coercive stability of initial value for

the abstract parabolic equation.

Theorem 2.3.2. (Ashyralyev and Sobolevskii, 2004) Let A be a strongly positive
operator in a Banach space E and ¢ € D (A), f € C([0,T],E,),0 < a < 1. Then,

the solution of the initial value problem
u + Au(t) = f(t),0 <t < T,u(0) =¢ (2.50)
in a Banach space E, satisfies the following coercive inequality

||u,||C([0,T],Ea) + ||AuHC([O,T],Ea)

M
<M |[[A¢llg, + a(i—a) 1l e o e
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Second, we consider the nonlocal boundary value problem for the parabolic
equation

(

Oulta) _ Pulla) 4 syt 0) = f(t,2),0 < t < T,z € (0,1),

uw(0,2) = u(T,x),z € [0,1], (2.51)

\ u(t,0) =0,u(t,1) =u(t,n),0 <pu<1,0<t<T.

Here, f(t, ) is a sufficiently smooth function and it satisfies any compatibility

conditions which guarantee problem (2.51) has a smooth solution u(t, z).

Theorem 2.3.3. Let 0 < 2« < 1. Then, for the solution of boundary value problem
(2.51), the following coercive stability inequality holds:

e + ull

70y S M@V

O([O,T],E*Qa[o,l]) C([O,T],C [0,1] O,T],(OJM [0,1}) )

The proof of Theorem 2.3.3 is based on Theorem 2.2.1 on the structure of the
fractional spaces E, = E, - (C'[0,1], A%),

Theorem 2.1.1 on the positivity of the operator A* on the following theorem
on the coercive stability of the nonlocal boundary value for the abstract parabolic

equation.

Theorem 2.3.4. (Ashyralyev and Sobolevskii, 2004) Let A be a strongly positive
operator in a Banach space E and f € C([0,T],E,),0 < o < 1. Then, for the

solution of the nonlocal boundary value problem
u + Au(t) = f(t),0 <t < T,u(0) = u(T) (2.52)

in a Banach space E, we have the following coercive inequality

M

/
||U ||C([O,T],Ea) + ||AU||C([0,T],EQ) < 04(1—

— Q) ”fHC([O,T],Ea)’
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2.3.2 Elliptic problems

First, we consider the boundary value problem

,
_Pulte)  Dulba) 4 syt ) = f(tx), 0<t<T, x€(0,1),

S w(0,2) =p(x), w(T,z) =(x), =e€]l0,1], (2.53)

| w(t,0) =0,u,1) =ult,p),0<p<1,0<t<T.

Here, ¢(z),v¢(z) and f(t,x) are sufficiently smooth functions and they satisfy any
compatibility conditions which guarantee problem (2.53) has a smooth solution

u(t, x).

Theorem 2.3.5. Let 0 < 2a < 1. Then, for the solution of the boundary value
problem (2.53), the following coercive stability inequality

“UttHC([O’TLém[O’l]) t Hu”c([o,ﬂ,éuza[ogo

< M(a) |lle

82”&[071] + ||q/) 82+2a[0’1} + HfHC([O,T],E'ZHa[oJ])

1s valid.

The proof of Theorem 2.3.5 is based on Theorem 2.2.1 on the structure of
the fractional spaces E, = Fq (C'[0,1],A"), Theorem 2.1.1 on the positivity of
the operator A%, on the following theorems on coercive stability of boundary value
problem for the abstract elliptic equation and on the structure of the fractional space
E' = E,(E,AY?) which is the Banach space consisting of those v € E for which

the norm

AV (A4 AV Ty

. «
ol 5, = sp J+ ol

is finite.

Theorem 2.3.6. (Ashyralyev and Sobolevskii, 2004) The spaces Eo(E, A) and

By (B, AY?) coincide for any 0 < a < &, and their norms are equivalent.
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Theorem 2.3.7. (Ashyralyev and Sobolevskii, 2004) Let A be positive operator in
a Banach space E and ¢ € D (A),v € D(A), f € C([0,T],E.),0 < a < 1. Then,

for the solution of the boundary value problem

—u" + Au(t) = f(t), 0 <t < T,u(0) =¢, w(T)=1 (2.54)
in a Banach space E the following coercive inequality holds:
n M
Ju ||C([O,T],E&) + ||Au||C([O,T],E&) <M ||A90||E{1 + ||A¢||E(’l + m ||f||c([o,T},Eg)

Second, we consider the nonlocal boundary value problem for the elliptic equa-
tion

)
_Pulte) _ Puba) 4yt ) = ftx), 0<t<T, z€(0,1),

w(0,2) = u(T,x), uw(0,x)=wu(T,x), xe€l0,1], (2.55)

\ u(t,0) =0,u(t,1) =u(t,u),0<pu<1,0<t<T.
Here, f(t,z) is sufficiently smooth function and it satisfies any compatibility condi-

tions which guarantee problem (2.55) has a smooth solution u(t, z).

Theorem 2.3.8. Let 0 < 2a < 1. Then, for the solution of nonlocal boundary value

problem (2.55), the following coercive stability inequality holds:

o« o @ < M o= ’
||Utt||c([O7T]702 [071}) + ||u||c([O7T]7C2+2 [0,1]) < M(a) “ch([o,T},c2 [0,1])

The proof of Theorem 2.3.8 is based on Theorem 2.2.1 on the structure of the
fractional spaces E, = E, . (C'[0,1], A%), Theorem 2.1.1 on the positivity of the op-
erator A”, Theorem 2.3.6 on the structure of the fractional space E!, = E,(E, AY/?)
and on the following theorem on coercive stability of the nonlocal boundary value

problem for the abstract elliptic equation.

Theorem 2.3.9. (Ashyralyev, 2003) Let A be a positive operator in a Banach space
E and f € C([0,T),E!), 0 < a < 1. Then, for the solution of the nonlocal boundary

value problem
—u"+ Au(t) = f(t), 0 <t <T,
(2.56)
w(0) = u(T),u'(0) = u/(T)



in a Banach space E, the coercive inequality

1" leqomey + 1Al cqomm)

18 valid.

M
<

ol -«

) HfHC([o,T],Eg)
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CHAPTER 3

POSITIVITY OF AX AND STRUCTURE OF
FRACTIONAL SPACES E, (L[0,1], A¥)

In Chapter 3, the positivity of the differential operator A* in L, [0, 1] is estab-
lished. The structure of fractional spaces E, 1(L1[0, 1], A”) will be investigated. It
is established that for any 0 < o < 1/2 the norms in the spaces E,1(L1[0, 1], A%)
and W32 [0,1] are equivalent. This result allows us to prove the positivity of A*
in W2[0,1] (0 < @ < 1/2). In applications, we will obtain new coercive inequali-
ties for the solution of local and nonlocal boundary value problems for elliptic and

parabolic equations.

3.1 POSITIVITY OF AX IN L, [0, 1]

First, the positivity of A* in L, [0, 1] is investigated.

Theorem 3.1.1. For all A € R, = {)\ : |argA| < p,p < 7/2}, the resolvent
(A + A®)™Y defined by formula (2.4) is subject to the bound

M(p,0)

H()J + A$)71HL1[0,1]—>L1[0’1} = TI/\I

Proof. Using formula (2.4) and the triangle inequality, we get

ju(z)| < / Gz, 5, A+ )] |f ()] ds (3.1)

35
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for any x € [0,1]. We denote that
f(s),s €10,1],
fils) = (3.2)
0,s ¢[0,1].

Then, using inequality (3.1), estimates (2.7), (2.8) and the triangle inequality, we

1 1 1
u(z)| de < |G (2,5, 13 A + )| [ f+(s)| dsd
[ro=]]

1

1 u 1
:i//Wm&M%MMﬂ@Mw%ﬂ//W@&m%%Mﬁ®Mww
k0

14p
== H

have

+ /IG z, 8, 1y A+ 0)| | fu(s)| dsdx

D\ ‘+

M (5 2 / ‘f x s)
52 1 |)\|,U — /6 6 +\)\| 2(1—a+p— |f ( )| dsdax
+

1+p 0

2

1

+
My (
(yi&%“/‘/ TR o) s
1+u

1
M1(5 ,U) 7(52+‘)\|2)1/4ﬁ‘3)78|
+— 2 % dsd
. |A|)1/4/0/_16 .(5)| dsda

2 + 2

i
M(;;JJ 2 /fxs
! w// (#4)F el | 1 ()] dsda
)

1 14u

Ml (67 M)
< __W\»r
_wuwwﬂ/

14p

—_

e~ (PHE) R ) | £ () ) dyda

o\

-1

M (5, T e
+-——Jﬁ—fizzQ/"t/] () E D | oy 4 )| dyda
(9 + W) "1

‘{:

) 1/4
+%// (PAE) L £y + 2)| dyda
(62+|/\| ) iu—l

2



L

M1 0, u // (82+12) Vi, |fo(y + 2)| dydz
A

-1

Jr
M15u 2 /f
S—1/4/ (82+2) T2 (1 y+“dy/|f y—x)|dx
| 1+u

(8 + A

1
Mlé,ul/ /e (82+I71%) 1+yu / Ly + z)|dx
2
(6 +|>“ p1 e

M (0, — (824 N2) 2
—i—%/e (82+17) 2|y|dy/|f*(y—|—x)|dx

(82 + A7),
HTM
Mi(S 1/4
p SO [ () gy [0y 4 ) o
(62 + A1) -

m

1
Ml((s, M) 6_(52+)\|2)1/4\é§(1—y+ﬂ)dy/ |f*(3)| ds
0

o 7 O

,uT—l 1
MO ) By 7 (s) ds
(52 Y )1/4 Y *
-1
Ml (57 lu)

1
_ 9 1/4@
e ] (52 1A2) /1 |y|dy/|f*(s)|ds
(82 + |AP) 0

1

) Sty 17,0 s

-1

M1 (5 ,U,
+—1/4
(62 4+ |AP)

o\ ‘H ""{f\,i

< Mo,
A Wl

Thus, we obtain

S M (g, 9)
647+ 07 oy < T3 W llaion:

From that it follows

M(p,d)

T —1
[(A” + A) HLl[o,uaLllo,u < FE

So, Theorem 3.1.1 is proved.
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Clearly, the operators A% and its resolvent (A + A%)~! commute. Thus, from

the definition of the norm in the space E, 1(L; [0,1], A*) it follows that

|(A+A")" <H A+ A"

d
Ea,1(L1[0,1],A%)—=Eq 1 (L1[0,1],47) L1[0,1]—Lq[0,1]

Hence, by using Theorem 3.1.1, we obtain the positivity of the operator A* in the
fractional spaces F, (L1 [0,1], A®).

3.2 THE STRUCTURE OF FRACTIONAL SPACES E, (L, [0,1],A%),

o 2«

POSITIVITY OF AX -IN- W, [0, 1]

o 2«

Now, we will study the positivity of A* in W; [0,1]. We have the following

theorem.
Theorem 3.2.1. Let o € (0,1/2). Then, the norms of the spaces E,1(Ly [0, 1], A%)
o 2«

and Wy [0,1] are equivalent.

o 2«

Here, Wy [0,1] (0 < 2a < 1) is the Banach space of all integrable functions
¢(x) defined on [0, 1] and satisfying a Holder condition for which the following norm
is finite

1

1 1
o (z+y) —p ()] |0 () = ¢ (0)]
Il 2 = / / pEeE dydz + a4 Tl
0 0

0

Proof. For any A > 0 using formula (2.38), the triangle inequality, we get

1
ol ix . dA INY dA
//)\ |A* (X + A*) 7 f(2)| da /5+/\/\ /|f(x)|dx

w a+1

X (14 e BP0 | () e

1 o©

N ‘ dA
+0/0//\ HO/]Gx s,u,)\—i-(;)\]f(x)—f(s]dsde

=P+ P+ P,
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where

00 1
oY dA
r= [ 255 i@l
0 0

1
/ VoA 4 67\/5““( o~ VIFA(1—z) _ 67\/5+A'(1+x))
0

o[

X (14 e VERE) L (g )\dx%
00 1 1
_ a+1 . o @
P3—0/>\ O/O/|G(:B,s,u,)\+(5)]|f(a:) f(s|dsda:)\.

o 2«
Using the definition of norm space W; [0, 1], we have

1

SAC d )\ T
P, < L o
< / T W lon < | [ 5o+ [ e [ Ml

0 0 1

M(9)
a(l—a) " s o)

(3.3)

Now, we will estimate P,. We obtain that
0

0o 1
+/ ot /[6—‘/‘”)‘“(6_‘/‘5*“1_””) _6—\/6+>\(1+a:))
0+ A
0 0

/ T | () — [(0)] dd

d\
x (1 + e~ VoA - }]f( )|d$7=P21+P227

e

00 1
e+ d/\
Py = / / [eﬂ/éJr)\y(e—\/(H)\(l—x) o 67\/6+/\(1+m)>(1 + eﬂ/ A(1+p) ) ] ‘f( )‘ dCC

where

/ VBTN f(2) — £(0)] did,

O+ A
0 0

First, we will estimate P»;. We have that

1 ')
Py — / (@) — F(0)] / e TN,
0

0
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Since . .
A —V/5+X / =1 _—V6+X
TAIN< [ (6+N)° AN
/ SN s JO+ATe
0
_ /ya—le—ydy$2—2a—2 S /ya—le—ydyx—Qa — G(CJ./)ZE_QQ,
Viox
we get
1
Py < G(a) / o |f (@) = fO)ldw < G |l 2o (3.4)
0

Second, we estimate Ppy. Clearly, we have

Py =M / y/A+5a15+ (+u=2) A d,
0

In same manner, we obtain

/ A e*\/ﬂi)\(lJrufx)d / 5+)\ a—1 *\/W(Nru w)d)\
O+ A
0 0
N / y e dy(1 4 p —x)? e
Vé(1+p—z)

Thus, we get

Pas < M(3)G() / (14— )72 | f(2)] da

< MEG(a) [ 5 @) de < MEWG) |l o o (33
0
Combining estimates (3.4) and (3.5), we have
P < M 1 o 2« . .
< (M0 + D 6() I o 39

Now, we will estimate Pj.

[e'e) 1 1
d\
- / Aot / / G5, A+ 0)| () — (5)] dsdr S
0 0 0
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+
= 00
M > 2\1/4 /3

s///W“ 15wme@ﬂm‘ﬁﬂ%vw—ﬂﬂﬁw

0 0 |>\| )

i M 5 1/4 d)\

. / // \art 1|)\|u))1/4e (82+A2) 2 (1t ) ~ |f(@) = f(s)| dsdu

14p

»

1 z+bE=
1 5 2 e (1l—x+s— d)\

M, (9, 2. 1y 2\ /42 d\
/ / /)‘O‘“ 52+1(|/\\M))1/4e (o2+12)" gl35_8'7’]”(96)—Jf(s>‘)’d5>‘d?’f-

1+u +M 1

We have that

/AOH-l 1 67(52+‘)\|2)1/4§‘x78|ﬁ
- 1/4 A
82 + |A[%)
b
/ : 7)\%§|mfs\d/\.
J A2~

Putting /\%‘/75 |z —s| =y, we get A = o and d\ =

[o¢] 00 2 afl
2
/ ! 6-A%§|w_s|d)\:/< 2y ) ey Y _
1_ 2 2
/A ) \|z = | |z — 5|

a+3 1 r -y 2a a+%
=2 a1 /6 ydy = G(2a+1) 2a+1
iz — 5 / |z — 5|
and
oo a+3
/)\a+1ﬁ6_(52+|’\|2)1/‘1?M_S'% < GQ2a+ 1)| ° |;oc+1'
02 + Al ’
0
Similarly, we can show that
/)\0‘“;1/46_(6%"\' ) s 4A < G(2a+1) ik 20+1
S (@) r e
and
//\O‘“;Me@z*)" ) (—rps) AN A <GQR2a+1) . Zat1
S @)Y r oy
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Therefore,

L
Py < G20+ 1) My (6 // QQH @) = F g,
0

+G(2a+ 1) Ms (0, ) / / a _|fl(‘$—')_ ; i<88))2|a+1dsdx

1 z+it

+G(2a + 1) Ma(0, ) / / 1—:15—1—5 (:))iaﬂdsdx

1+,u

+G(2c0 + 1) My (0, ) / / 2a+1 dsdx

1+# x_,'_,u 1
e

= G(2a + 1) Ms(0, ) /

0 0

CEO

‘:L_ _ S’QOH_I

1 I+L_1

//1—x—|—u ))2|a+1d8d$+/ /

1tp 14u
2

L M@=l
(l—z+s— Iu)QoHrl

/ / 2a+1 d dx

ITH x_i_l‘*

=< G(2Oé + 1) M8, ) [I£]] 2o

0.1]
Thus,

1oy < Malassss8) 1L g o (37)

Now, let us prove the reverse inequality

Hf||mc}12a[0 . < My(a, 11, 0) || fll g, 4 (paj0,17,4%) - (3.8)

Applying formula (2.44), we get

flz+7)—f(z)

o) 1
= /)\a / [G(x 47,8, 15X+ 8) — G, 8, i3 A+ )] A*A° (A + A®%) 7 f(s)dsdA.
0 0

The proof estimate (3.8) is based on this formula and estimates (2.7), (2.8) and the

triangle inequality. This finishes the proof of Theorem 3.2.1.
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From positivity of A* in E,; and Theorem 3.2.1 it follows the positivity of A”

o 2«

on Wy [0, 1].

o 2«

Theorem 3.2.2. The operator (A + A*) has a bounded inverse in Wy [0, 1] for any
A > 0 and the following estimate holds:

M@©G) M

A+ A7) .
”( + A7) Wi 01— 0] ~ 2a(l —2a)d+ A

3.3 APPLICATIONS

In applications, we will obtain new coercive inequalities for the solution of

local and nonlocal boundary value problems for parabolic and elliptic equations.

3.3.1 Parabolic problems

First, we consider the initial boundary value problem (2.49).

Theorem 3.3.1. Let 0 < 2a < 1. Then, for the solution of the initial value problem

(2.49), we have the following coercive stability inequality
HUtHLl ([07T17V[‘}12“ [071}) T HUHLl ([O,T],Vlo/12+2a[0,1])
< M ° @ o “a :
< 200 Il 2oy I 700

The proof of Theorem 3.3.1 is based on Theorem 3.2.1 on the structure of the
fractional spaces E,1 = Fq1(L1][0,1], A%), Theorem 3.1.1 on the positivity of the
operator A” on the following theorem on coercive stability of initial value for the

abstract parabolic equation.

Theorem 3.3.2. Let A be a strongly positive operator in a Banach space E and
o€ D(A), f e Li([0,T],En1),0 < o < 1. Then, for the solution of the initial

value problem (2.50), the following coercive inequality

141l o,y + 1A L 01,500
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M

<M |[|Asll, , + all—a) 11 o7, )

1s valid.

Second, we consider the nonlocal boundary value problem for parabolic equa-

tion (2.51).
Theorem 3.3.3. Let 0 < 2a < 1. Then, for the solution of boundary value problem
(2.51), the following coercive stability inequality holds:

||Ut||Ll([ o 206[071}) + ||U||L1( o 2420 ) < M(a) ||f||Ll([

o 2« .
OvT]vwl [OzTLWl [071] OvT]vwl [0»1])

The proof of Theorem 3.3.3 is based on Theorem 3.2.1 on the structure of the
fractional spaces Fn,1 = Eq1 (L]0, 1], A%),

Theorem 3.1.1 on the positivity of the operator A* on the following theorem
on the coercive stability of the nonlocal boundary value for the abstract parabolic

equation.

Theorem 3.3.4. Let A be a strongly positive operator in a Banach space E and
f e Li(0,T],E41),0 < a < 1. Then, for the solution of the nonlocal boundary

value problem( 2.52), we have the following coercive inequality

M

/ -
141, 0,7, 50y + 1A 2y 017,80 S a(l =

Oé) HfHLl([O,T},Ea,l) :

3.3.2 Elliptic problems

First, we consider the boundary value problem (2.53).

Theorem 3.3.5. Let 0 < 2a < 1. Then, the solution of the boundary value problem
(2.53) satisfies the following coercive stability inequality

U o 2a + ||u o 2+2a
V") "1 )

< M R “ ° a o « .
> (a> ||('0||W12+2 [0,1] + ||w W12+2 [0,1] T ||JC||L1([O,T],VV12 [0,1])

The proof of Theorem 3.3.5 is based on Theorem 3.2.1 on the structure of
fractional spaces E,1 = Eq1(L1][0,1], A%), Theorem 3.1.1 on the positivity of the
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operator A*, on the following theorems on coercive stability of boundary value prob-
lem for the abstract elliptic equation and on the structure of the fractional space
El, = E,1(E, AY?) which is the Banach space consisting of those v € E for which

the norm
oo

_ o
ol = [ &

0

A1/2 (A_i_Al/Q)*lvH @

E A

is finite.

Theorem 3.3.6. (Ashyralyev and Sobolevskiz’, 2004) The spaces Eq1(E,A) and

By (E, AY?) coincide for any 0 < a < L 5, and their norms are equivalent.

Theorem 3.3.7. (Ashyralyev and Sobolevskii, 2004) Let A be positive operator in
a Banach space E and ¢ € D(A),¢ € D(A), f € Li([0,T],E,;),0 < a < 1.
Then, for the solution of the boundary value problem (2.54), the following coercive
inequality holds

M
||u//||L1 ([0,1),E!, +HAU||L1 (0,1),E, 1) = <M HAQOHE;,1 + ||A1/’||E(;71 + m ||fHL1([O,T],E£X!1)

Second, we consider the nonlocal boundary value problem for the elliptic equa-

tion (2.55).

Theorem 3.3.8. Let 0 < 2a < 1. Then, for the solution of nonlocal boundary value

problem (2.55), we have the following coercive stability inequality

HuttHLl([O,T},Mo/lga[o,l]) ” || ([OT o2+2a[071]> ( )HfH ([oT W1 [0,1])'

The proof of Theorem 3.3.8 is based on Theorem 3.2.1 on the structure of
the fractional spaces E,; = E,1(L1[0,1],A%), Theorem 3.1.1 on the positivity
of the operator A®, Theorem 3.3.6 on the structure of the fractional space E, ; =
E,1(E, AY?) and on the following theorem on coercive stability of the nonlocal

boundary value problem for the abstract elliptic equation.

Theorem 3.3.9. (Ashyralyev, 2003) Let A be a positive operator in a Banach space
E and f € Li([0,T],E, ), 0 < a < 1. Then, for the solution of the nonlocal
boundary value problem (2.56), the coercive inequality

M
"
Ju HLl([O,T},E;J) + HAuHLl([O,T},E;J) < al—a) HfHLl([O,T],E’a’l)

18 valid.



CHAPTER 4

POSITIVITY OF AX AND STRUCTURE OF
FRACTIONAL SPACES E, p(Lp|0, 1], AX)

In Chapter 4, the positivity of the differential operator A® in L,, [0, 1] is established.
The structure of fractional spaces E, ,(L,|[0, 1], A*) will be investigated. It is estab-
lished that for any 0 < o < 1/2 the norms in the spaces E,,(L,[0,1], A*) and
Wan [0,1] are equivalent. This result permits us to prove the positivity of A® in
W2*[0,1] (0 < a < 1/2). In applications, we will obtain new coercive inequali-
ties for the solution of local and nonlocal boundary value problems for elliptic and

parabolic equations.

4.1 POSITIVITY OF AX IN L0, 1]

First, the positivity of A® in L, [0, 1] is investigated.

Theorem 4.1.1. For all X € R, = {\ : |argA| < p,p < 7/2}, the resolvent
(A + A®)71 defined by formula (2.4) satisfies the following estimate

M(p,9)

\—1
H()\[+ A ) HLP[071]—>LP[O7H S T’)\’

Proof. Using formulas (3.1) and (3.2), we get

u(a)] < / Gl 5,15 A+ 0)| |£.(s)] ds
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for any x € [0,1].Then, using estimates (2.7), (2.8) and the triangle inequality, we

obtain

(/u(x)de)p < (/1 (/G(x,s,ﬂ;A+6)f*(s)d5>pdx)p

0

1 1% p %
= / (/G(x,s,u;)\+5)f*(8)ds) dx
EANY
1o/ P\
- / ( |G( :c,s,u;)\—i-é)f*(s)ds) dx
- N
+ /(/Ga:su,)mL(S)f()ds) dx
0 \0

m p %
Ml 5 ,u 67(52+|)\|2)1/4§(171+u73) |f*<8)| ds dr
(52 02+ )"
i 0
P\
( M0 1/4 ( ~(E) TR A | fi(s)|ds | dx
92 + |>\\

+
p
M (5[1; 2 /fzs
I () Rl | () s | do
( |/\| 1+u

E b
1/4
Mlaum / / e ORIl £ ()] ds | d
+ M) AN

hSA

1+ ,u, p %
M (5 2 f
< 1( /;)1/4 / ~ 6+|>\\ (1— y+u)|f( —:E)|dy dr
02+ A5 2
2
e P\
M (5, 2 /f
ST / / PR TSC (y a)| dy | d
02+ A7) L\
2



p

5 2\1/4 /3
)R gy 1)y |

—

p—1
2

1
o
2\ 1/4
(02 4+ 1) Ao

1

1+,u p
M 5 2 /f
Ly 101 1/4 / /6 () [fely +2)ldy | dx
(62 + M%) J

—1

1+p 1
M, (6, ()2
< i) / ) 0wy [y — )]s
(5 + ’)\’ ) Lip
G | |
Mi(0, pu —(2+ ) L2 1y —p) p
_//< gy | fy + ) da
(5 + [Al ) ~1 Ltu
2
1 1 v
M (6, ()
_'_% / e (82+AP) %5 Iy\dy / |f(y + 2) [P d
( |)\| ) 1+,u

2

Lin
My (0, ) (52+7%)" 2
1/4 / +A?) Iy\dy /|f y + )" da
52+|>\| 9
- M) / ~(HAP) T ) g (/f pds)
(62 + AP

M1 d, M 1/4 / 62+\>\| V2 (14y— ”“)dy (/ ‘f ’p ds)
52+ 1A|
1
+%/ () Plulg, /If as)
(02 + AP

1+p

ARO[ ety Foiay ([ 17 i
o\ 1/4
(624 |\l ) 0 0
M(p,9)
<
< T2 0
Thus, we have
< M(p,9)

A"+ 07 ] o < 5 111z 0.

T

D=

D=
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From that it follows

m M (gp,0)
H(A +) lHLp[OlaLp[OH = TW

Theorem 4.1.1 is proved.
Clearly, the operators A% and its resolvent (A + A%)~! commute. Thus, from

the definition of the norm in the space E, ,(L, [0,1], A") it follows that

(A + A"~ < |[(x+AH) 7|

1
HEa,p(Lp[ozl]vAm)HEa,p(Lp[ovl]:A’“) Lpl0,1]=Lp[0,1]

Hence, by using Theorem 4.1.1, we obtain the positivity of the operator A* in the
fractional spaces E, (L, [0,1], A").

4.2 THE STRUCTURE OF FRACTIONAL SPACES E, p(Lp[0,1], A¥),

o 2«

POSITIVITY OF AX IN Wp [0, 1]
o 2«
Now, we will study the positivity of A* in W, [0,1]. We have the following

theorem.

Theorem 4.2.1. Let a € (0,1/2),1 < p < oo. Then, the norms of the spaces
o 2«

E.,(L,[0,1), A%) and W, [0,1] are equivalent.

o 2«

Here, W, [0,1] (0 < 2ae < 1) is the Banach space of all integrable functions
©(x) defined on [0, 1] and satisfying a Holder condition for which the following norm

is finite:

_ o (z+y) —¢(x) |so 0)]
i, o // e iy e e+ el

Proof. For any A > 0, using formula (2.38), the triangle inequality, we obtain

1%

o] 1 p %
/ /A“}AM+AI x)| dx d—;
0 0

o0

1 p
ON® d\
< sy
< / 5+/\|f($)|dl’ i

0 0




00 1

)\aJrl

X (/ (5 . /\/ [e’*/‘”M 4 67\/6+)\,u<67\/6+/\(17x) _ e*\/6+)\(1+z))
0 0

x(1+ VTR0 | f(a)] d)” %) ’

; (]O ( / Ao+ / G, 5, 1A+ 6)| £ () = £(s dd)%) )

=1+ Q2+ Q3,

=

where

0

Q= ( / ( 5‘&)73%); / ()] da.

O+ A

00 1

a+1

Qs = (/ (A i / [e—\/5+kw + e—mu(e—\/ﬂx(l—:c) _ 6—\/§+)\(1+$))
0 0

(14 0] o)) )

0 0

o 2«

Using the definition of norm space W, [0, 1], we get

Troe N’
Qi < (/(5“) 7) 171,00

0

1 1
1 D [e's) D
d\ d\
<M (/ Alap) +0 (/ —)\lJr(la)p) HfHLp[O,l]
0

< M6, p,a)|lf

o 2« .
W,  [0,1]

Now, we will estimate )5. We have that

Tl b "o
Q. < (/ (H [ev f<x>f<o>dx> 7)
0

0

>

Q3 = (7 (/1/\0‘+1/1G(x,5,u;)\+5)f(x)f(sdsdx)pd—)\)\>p.

20



o1

[e’s) )\aJrl 1
n / - /\/ VIR ((~VETA(=2) _ ~VETA(140))
0 0
1
_ pd A\ P
(14 VTP | f(0)] d) 7) ,
= Q21 + Qa,
where )
% )\a-‘rl ! _\/m pd)\ P
= [55 [ @ - ol ) T
0 0
o] >\a+1 1
Q2 = / 5T /\/ |:€*\/5+)\/L(e*\/m(1fw) _ e*\/m@er))
0 0

X (1 e VER) ] | >|daz)pd—j)’l’

First, we will estimate (J2;. We have that

1 00
)\a+1 p d\
QQI §/|f(x)—f(0)| /(me_ 6+)\$) j dzx.
0

0

3=

Since
1 1
T/ et P T ’
/(5+)\ (5-&-)@) 5+)\ S /(5+/\) 1+(14a)p —P\/Wmd)\
0 0
_9 / AP oy gy =2 Lp(a+ 1)
Vo

<9 / AP P gy o A= Tp(0 )\ f(py )21 Hpla D)
0

we have that

1
Qu < M(p,a /:c L2t ) | £(2) — £(0)] dz < M(p, @) || ]| o 2
0

w, [01]

Second, we estimate (J22. We have that

1 oo
P dA
< +FA(1+p—z) ]
Qu < 36) [1560 | [ (555 ) 525 @
0

0

=
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In the same manner, we obtain

/ )\aJrl - FTR(Ltpa) p d\
0+ A o+ A

0

S =

[e.e]

< /(5 + )\)—1+(l+a)p e—p\/m(1+u_x)d)\

0

[ee]
—9 / yQ(—1+p(a+1))e—ydy(1 + - x)—Q(—Hp(aH))

Vo(14p—x)

o0

< 2/y2(—1+p(a+1))6—pydy(1 + - x)—2(—1+p(a+1))

0

= M (p, o) (14 p — x)—2(—1+p(a+1))‘

Therefore,

1

Q22 < Mi(p, a) /(1 + ) PO f(a) da < Mo (p, @) | f

o 2a .
Wy [0,1]
0
Then,
< M o 2a .
Q. < Mlp. ) ISl =
Now, we will estimate (5.
ey ")’
Qs = / //\a+1/\G(LE,S,M;)\+6)\\f(x)—f(s\dsdx @
0 0 0
ES s
/ i M ((5 ) 2 2\1/4 2 P d)\
< //\f(l") —f(s)\dsdg:/ (Aa+11—’“1/46—(5 +HIAR) 2|$_S|> dX
00 0 (62 + |\ A
[ i My (6 / " A %
+ //’f(l“)—f(S)]dsdx/<)\0‘+11(—"u)1/46—(52+>\|2) “25(1_x+u_5)> dA
1he 0 ; (62 4+ |AP%) A
2
e i M, (0 p
2 o\1/4 /3
+ |f(z) — f(s)|dsdx /()\Wll(—’“)we(é +AR) {(1”5“)) dX
ek 0 (52+|/\|2) A

hSA



11 0
+ / / |f( |dsdx / (}\a+1 M1 (5 M)1/4e (52+|/\2)1/4\é§|x_8> @
0 62+ A A

1+p pm—=1
7 Tt

We have that

oo p
>\Oc+1 1 _(52+‘)\|2)1/4§‘x_5| @
(52 + |)\|2)1/4€ A
0

St/i———lr——eA%%?mﬂdA.
)\l—p<§+a)

0
Putting /\%*/7§ |lx — s| =y, we get A = ‘2 and d\ = ‘2 Then

1 Ji 1
= 4.2p<%+a) /epyyp(f"a)_ldy = M(a p)
—2+42p(L+a)+2 ’
Iz — s +2p(3+a)+ J |
and
—p)\%gkc—sl _ 1
/ )\1 p d\ = M(a,p) |27 . S‘p(2a+l) ’

0

Likewise, we can show that

p

0

1
< M(a, p) (l—z+s— M)P(2a+1)
and .
/()\O‘H L () 2aatu- s))p@
/ (52 + |)\|2)1/4 A
< M(a,p) 1 :
(1—z+p— sty
Thus,

l+

Q3 < M(a,p) / L’Qailﬂdsdx

|

f(s)]
(cv dsdz
D) // 1—$‘|‘H 5)2

/ et 1 . 467(62+\)\| V2 (1 —ats—p) 2
(62 + [A2) A

1

dydy

0o oo ) 1—p(L+ta
/;e—mé‘flx—sld)\ _ / (L) G )e—py—
S r(ate) S \|z—sf o — s

1

N S|p(2a+1)
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1 it

<S)|
O./ dsdx
P 1+/ / 1 —Tr+Ss— u)m !

ap/ / 2a+1dd

I-HL +u 1
l«;u 1
|f(z) = f(s)|
= M(Oé,p) / Wdel'
0 0

+
/ (8)2|a+1 dsdz
(1—z+s—p)

/ / 2a+1 dsdx

S M3(a>p> Hf

[ f(s)]
s
+ dsdx +
/()/ 1—JJ+/L >2a+1

L4p
2

\*\H

o 2a

0.1
Hence,

1 s gl amy < Malas s 0) 1 o e -

Now, let us prove the reverse inequality

I1f

Mgph[oﬂ < Mu(a, i, 6) Hf|’E‘a7p(Lp[0,1],Ax) : (4.1)

Applying formula (2.44), we get

flz+7)— f(z)

o) 1
= /)\a / [G(x 47,8, 1A+ 8) — G, 8, i3 A+ )] A* A (A + A%) 7 f(s)dsdA.
0 0

The proof estimate (4.1) is based on this formula and estimates (2.7), (2.8), and the

triangle inequality. Theorem 4.2.1 is proved.

From positivity of A* in E, , and Theorem 4.2.1 it follows the positivity of A”

o 2«

on W, 10,1].

o 2«

Theorem 4.2.2. The operator (A + A*) has a bounded inverse in W, [0, 1] for any
A > 0 and the following estimate holds:

M) M

A4 A7) o 20 .
H( + A7) W, [0,1}%Wp2 01 — 2a(l —2a) 5+ A
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4.3 APPLICATIONS

In applications, we will obtain new coercive inequalities for the solution of

local and nonlocal boundary value problems for parabolic and elliptic equations.

4.3.1 Parabolic problems

First, we consider the initial boundary value problem (2.49).

Theorem 4.3.1. Let 0 < 2a < 1. Then, for the solution of the initial value problem

(2.49), we have the following coercive stability inequality

HUtHLp([O,T],VI(}pQQ [011}> + ”uHLp ([OyT}yvf}pQ‘*‘Qa [0,1]>

< M(a) | e

2o T ”Lp([o,TJ,vﬁfa[o,u) '

The proof of Theorem 4.3.1 is based on Theorem 4.2.1 on the structure of the
fractional spaces E,, = F.,(L,[0,1],A"), Theorem 4.1.1 on the positivity of the
operator A” on the following theorem on coercive stability of initial value for the

abstract parabolic equation.

Theorem 4.3.2. Let A be a strongly positive operator in a Banach space E and
pe D(A), feL,(0,1],FEp),0 < a < 1. Then, for the solution of the initial
value problem (2.50), the following coercive inequality holds:

HUIHLP([O,T],ECX,T,) + [ Aullz, o.17,5.,)
M
<M |[|Aellg, , + a(l—a) 1Az, o775 | -

Second, we consider the nonlocal boundary value problem for parabolic equa-

tion (2.51).

Theorem 4.3.3. Let 0 < 2a < 1. Then, for the solution of boundary value problem

(2.51), the following coercive stability inequality

U o 2a =+ (lu o 242a < M« f o 2a
| t”Lp([o,Tpr [0,11) | ”Lp([o,ﬂ,wp [0,1}) (a)] “Lp([o,TLWp [0,11)

1s valid.
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The proof of Theorem 4.3.3 is based on Theorem 4.2.1 on the structure of the
fractional spaces E, , = E,, (L, [0,1],A"),

Theorem 4.1.1 on the positivity of the operator A* on the following theorem
on the coercive stability of the nonlocal boundary value for the abstract parabolic

equation.

Theorem 4.3.4. Let A be a strongly positive operator in a Banach space E and
feL,([0,T],E.p),0 < a < 1. Then, the solution of the nonlocal boundary value
problem( 2.52) satisfies the following coercive inequality

M
||U,||Lp([0,T],Ea,p) + ||AU||LP([0,T],E@,,J) < m ||f||Lp([0,T],Ea,p) :

«

4.3.2 Elliptic problems

First, we consider the boundary value problem (2.53).

Theorem 4.3.5. Let 0 < 2a < 1. Then, for the solution of the boundary value

problem (2.53), the following coercive stability inequality holds:
Hu“HLP([O,TW%M[OJJ) i Hu”Lp([O,Tl,vﬁfm[o,u)

<M o 2+2a
< M(a) [llgll , 2

p [ )

_|_'¢ o 242a +f o 2o
g Iy I o, o)

The proof of Theorem 4.3.5 is based on Theorem 4.2.1 on the structure of
fractional spaces E,, = E.,(L,[0,1],A"), Theorem 4.1.1 on the positivity of the
operator A%, on the following theorems on coercive stability of boundary value prob-
lem for the abstract elliptic equation and on the structure of the fractional space

E!,, = Eo,(E, AY?) which is the Banach space consisting of those v € E for which

o0
_ «
Jolle,, = | [ (
0

the norm

AV (A4 A2y E)p A

A

is finite.

Theorem 4.3.6. (Ashyralyev and Sobolevskii, 2004) The spaces E,,(E,A) and
E/

2a,p

1

(E, AY?) coincide for any 0 < o < 5, and their norms are equivalent.
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Theorem 4.3.7. (Ashyralyev and Sobolevskii, 2004) Let A be positive operator in a
Banach space E and p € D (A), € D(A), f € L,([0,T],E],,),0 < a < 1. Then,
for the solution of the boundary value problem (2.54), we have the following coercive
inequality

HUHHLP([O,T},E;W) + HAUHLP([O,T],E;,,])

M
<M HASDHE&J, + HAwHE&,p + m ”fHLp([o,T],Eg,p)

Second, we consider the nonlocal boundary value problem for the elliptic equa-

tion (2.55).

Theorem 4.3.8. Let 0 < 2a < 1. Then, the solution of nonlocal boundary value

problem (2.55) satisfies the following coercive stability inequality

U o 2a + [lu o 2+2a < M« f o 2a .
| ”HLP([O,TLWP [0,11) | HLP([O,TLWP [0,11) (a)] HLP([O,TLWP [071])

The proof of Theorem 4.3.8 is based on Theorem 4.2.1 on the structure of
the fractional spaces E,, = E,,(L,[0,1],A"), Theorem 4.1.1 on the positivity
of the operator A®, Theorem 4.3.6 on the structure of the fractional space E, , =
E,,(E,AY?) and on the following theorem on coercive stability of the nonlocal

boundary value problem for the abstract elliptic equation.

Theorem 4.3.9. (Ashyralyev, 2003) Let A be a positive operator in a Banach space
E and f € Ly([0,T],E,,), 0 < a < 1. Then, for the solution of the nonlocal

boundary value problem (2.56), the coercive inequality

M
1, 0,27,y + 1A L 0.1,y < a(l—a) 1AW 20,12,

1s valid.



CHAPTER 5

CONCLUSION

This thesis is devoted to study of second order the positive differential operator.

The following original results are obtained:

Green’s function of the second order differential operator with the nonlocal

condition is constructed.

e The positivity of the second order differential operator with the nonlocal con-

dition is established.

e The structure of fractional spaces generated by this differential operator is

investigated.

e In applications, theorems on well-posedness of local and nonlocal boundary

value problems for parabolic and elliptic equations are established.

o8
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