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ABSTRACT

In the present work, the positivity of the differential operator with the non-
local condition in Banach spaces is established. The structure of fractional spaces
generated by this differential operator is investigated. In applications, theorems
on well-posedness of local and nonlocal boundary value problems for parabolic and
elliptic equations are established.
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ÖZ

Bu çalışmada, Banach uzayında yerel olmayan koşullu diferensiyel operatörün
pozitifliği elde edildi. Bu diferensiyel operatör tarafından üretilen kesirli uzayların
yapısı araştırıldı. Uygulamalarda, parabolik denklemler için yerel ve yerel olmayan
sınır değer problemlerinin iyi konumlanmışlığına ait teoremler elde edildi.
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CHAPTER 1

INTRODUCTION

Several problems for partial differential equations can be considered as abstract

boundary value problems for first and second order ordinary differential equations

in a Banach space with a densely defined unbounded space operator. The posi-

tivity of differential and difference operators in Banach spaces is important in the

study of various properties of boundary value problems for elliptic, parabolic and

hyperbolic partial differential equations, of stability of difference schemes for par-

tial differential equations and summation of Fourier series converging in C-norm

is well-known (see, for example, (Krein, 1968), (Fattorini, 1985), (Ashyralyev and

Tetikoglu, 2015a), (Sobolevskii, 2005), (Ashyralyev and Sobolevskii, 1994), (Ashyra-

lyev and Sobolevskii, 2004)).

The positivity of a wider class of differential and difference operators in Ba-

nach spaces has been studied by many researchers (see, for example, (Alibekov and

Sobolevskii, 1977), (Ashyralyev, 1991), (Ashyralyev et al., 2014b), (Ashyralyev and

Sobolevskii, 1984), (Agmon, 1996), (Solomyak, 1960), (Danelich, 1989b), (Ashyra-

lyev, 2006), (Simirnitskii and Sobolevskii, 1981b), (Simirnitskii and Sobolevskii,

1982b), (Agmon and Nirenberg, 1963), (Agmon et al., 1959), (Agmon et al., 1964),

(Alibekov, 1978), (Alibekov and Sobolevskii, 1979), (Alibekov and Sobolevskii, 1980),

(Danelich, 1987a), (Danelich, 1987b), (Danelich, 1989a), (Stewart, 1980), (Solomyak,

1959), (Simirnitskiih, 1983), (Sobolevskii, 1977), (Sobolevskii, 1971), (Simirnitskii

and Sobolevskii, 1982a), (Sobolevskii, 1988), (Simirnitskii and Sobolevskii, 1964),

(Sobolevskii, 1997), (Sobolevskii, 1975), (Ashyraliyev, 2012), (Neginskii and Sobolevskii,

1970), (Simirnitskii and Sobolevskii, 1981a), (Ashyralyev and Agirseven, 2014a),

(Ashyralyev, 2003)).

Definition 1. An operator A densely defined in a Banach space E with domain

1
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D(A) is called positive in E, if its spectrum σA lies in the interior of the sector of

angle ϕ, 0 < ϕ < π, symmetric with respect to the real axis, and moreover on the

edges of this sector S1 (ϕ) = {ρeiϕ : 0 ≤ ρ ≤ ∞ } and S2 (ϕ) = {ρe−iϕ : 0 ≤ ρ ≤ ∞},

and outside of the sector the resolvent (λ− A)−1 is subject to the bound (see,

(Ashyralyev and Sobolevskii, 1994))∥∥(A− λ)−1
∥∥
E→E ≤

M

1 + |λ|
.

The infimum of all such angles ϕ is called the spectral angle of the positive

operator A and is denoted by ϕ(A) = ϕ(A,E). The operator A is said to be strongly

positive in a Banach space E if ϕ(A,E) < π
2
.

Throughout the present thesis, M will indicate with positive constants which

can be different from time to time and we are not interested in precise. We will

write M(α, β, · · · ) to stress the fact that the constant depends only on α, β, · · · .

For a positive operator A in the Banach space E, let us introduce the fractional

spaces Eα,p = Eα,p(E,A), (1 ≤ p < ∞), Eα = Eα,∞(E,A), 0 ≤ α ≤ 1 consisting of

those v ∈ E for which norms

‖v‖Eα,p =

 ∞∫
0

(
λα
∥∥A(λ+ A)−1v

∥∥
E

)p dλ
λ

 1
p

,

‖v‖Eα = sup
λ>0

λα
∥∥A(λ+ A)−1v

∥∥
E

are finite, respectively.

The structure of fractional spaces generated by positive differential and dif-

ference operators and its applications to partial differential equations has been

investigated by many researchers (see, for example, (Ashyralyev and Yaz, 2006),

(Ashyralyev and Tetikoglu, 2014), (Tetikoğlu, 2012), (Ashyralyev and Yenial-Altay,

2005), (Ashyralyev and Agirseven, 2014b), (Ashyralyev et al., 2014a), (Ashyra-

lyev and Kendirli, 2000), (Alibekov and Sobolevskii, 1977), (Ashyralyev and Ak-

turk, 2015), (Triebel, 1978), (Semenova, 2012), (Ashyralyev and Yakubov, 1998),

(Bazarov, 1989), (Nalbant, 2011), (Ashyralyev and Kendirli, 2001), (Ashyralyev

et al., 2014c), (Ashyralyev and Karakaya, 1995), (Ashyralyev and Taskin, 2011),

(Ashyralyev and Prenov, 2012), (Ashyralyev and Prenov, 2014), (Ashyralyev and

Sobolevskii, 1988), (Ashyralyev and Tetikoglu, 2015b), (Tetikoğlu, 2015), (Ashyra-

lyev and Nalbant, 2016)).



3

Important progress has been made in the study of positive operators from the view-

point of the stability analysis of high order accuracy difference schemes for partial

differential equations. It is well-known that the most useful methods for stability

analysis of difference schemes are difference analogue of maximum principle and en-

ergy method. The application of theory of positive difference operators allows us

to investigate the stability and coercive stability properties of difference schemes

in various norms for partial differential equations especially when one can not use

a maximum principle and energy method. However, the positivity of differential

and difference operators is not well-investigated in general. Therefore, the investi-

gation of positivity of differential and difference operators in Banach spaces and its

applications to partial differential equations is an important subject. Finally, we

should mention that the positivity of difference operators with nonlocal conditions

is investigated only in one-dimensional case. In (Ashyralyev and Karakaya, 1995),

A. Ashyralyev, I. Karakaya considered the differential operator Ax defined by the

formula

Axu = −a(x)
d2u

dx2
+ δu (1.1)

with domain D(Ax) =
{
u ∈ C(2) [0, l] : u (0) = u (l) , u′ (0) = u′ (l)

}
. Let a(x) be the

smooth function defined on the segment [0, l] and a(x) ≥ a > 0. It was proved that

Ax was the strongly positive operator in C [0, l] . For α ∈ (0, 1
2

), the norms of the

space Eα(C [0, l] , Ax) and the Hölder space C2α [0, l] were equivalent. It follows

that Ax was the strongly positive operator in C2α [0, l] .

In (Ashyralyev and Kendirli, 2000)- (Ashyralyev and Kendirli, 2001), A. Ashyra-

lyev and B. Kendirli considered the difference operator Axh defined by formula

Axhu
h =

{
−a(xk)

uk+1 − 2uk + uk−1
h2

+ δuk

}M−1
1

, uh = {uk}M0 ,Mh = l (1.2)

with u0 = uM , u1−u0 = uM−uM−1. This operator was a first order of approximation

of the differential operatorAx defined by formula (1.1). They proved thatAxh was the

strongly positive operator in Ch. For α ∈ (0, 1
2

), the norms of the space Eα(Ch, A
x
h)

and the Hölder space C2α
h were equivalent. It follows that Axh was the strongly

positive operator in C2α
h .
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A. Ashyralyev and N. Yenial-Altay considered in (Ashyralyev and Yenial-Altay,

2005) the difference operator defined by formula

Axhu
h =

{
−a(xk)

uk+1 − 2uk + uk−1
h2

+ δuk

}M−1
1

, uh = {uk}M0 ,Mh = l (1.3)

with u0 = uM , −u2 + 4u1− 3u0 = uM−2− 4uM−1 + 3uM . This operator was a second

order of approximation of the differential operator Ax defined by formula (1.1). They

proved that Axh was the strongly positive operator in Ch. For α ∈ (0, 1
2

), the norms

of the space Eα(Ch, A
x
h) and the Hölder space C2α

h were equivalent. It follows that

Axh was the strongly positive operator in C2α
h .

A. Ashyralyev considered in (Ashyralyev, 2006) the differential operator de-

fined by (1.1) and difference operator Axh which was a second order approximation

of Ax and defined by formula (1.3). He proved that Ax was the strongly positive

operator in the space Lp [0, l] , 1 ≤ p <∞ of the all integrable functions ϕ(x) defined

on [0, l] with the norm

‖ϕ‖Lp[0,l] =

 l∫
0

|ϕ (x)|p dx


1
p

.

Eα,p(Lp [0, l] , Ax) = W 2α
p [0, l] for all 0 < 2α < 1, 1 ≤ p <∞.Here, W µ

p [0, l] (0 < µ < 1)

was the Banach space of all integrable functions ϕ(x) defined on [0, l] and satisfying

a Hölder condition for which the following norm is finite:

‖ϕ‖Wµ
p [0,l]

=

 l∫
0

l∫
0

|ϕ (x+ y)− ϕ (x)|p

|y|1+µp
dydx+ ‖ϕ‖pLp[0,l]


1
p

, 1 ≤ p <∞.

This fact follows from the equality D(Ax) = W 2
p [0, l] for a second order dif-

ferential operator Ax in Lp [0, l] , 1 < p < ∞, via the real interpolation method.

The alternative method of investigation adopted in (Ashyralyev and Sobolevskii,

1994), (Ashyralyev and Sobolevskii, 2004), based on estimates of fundamental so-

lution of the resolvent equation for the operator Ax, allows us to consider also the

cases p = 1 and p = ∞. It follows that Ax was the strongly positive operator in

the space W 2α
p [0, l] for all 0 < 2α < 1, 1 ≤ p < ∞. Axh was the strongly positive

operator in the space Lp = Lp,h , 1 ≤ p < ∞ of mesh functions ϕh(x) defined on

[0, l]h with the norm

∥∥ϕh∥∥
Lp,h

=

 ∑
x∈[0,l]h

∣∣ϕh (x)
∣∣p h
 1

p

.
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Eα,p(Lp,h, A
x
h) = W 2α

p,h for all 0 < 2α < 1, 1 ≤ p <∞.Here, W µ
p,h = W µ

p [0, l]h (0 < µ < 1)

was the Banach space of all mesh functions ϕh(x) defined on [0, l]h with the norm:

∥∥ϕh∥∥
Wµ
p,h

=

 ∑
x∈[0,l]h

∑
y∈[0,l]h
y 6=0

∣∣ϕh (x+ y)− ϕh (x)
∣∣p

|y|1+µp
h2 +

∥∥ϕh∥∥p
Lp,h


1
p

, 1 ≤ p <∞.

This fact follows from the equality D(Axh) = W 2
p,h for a second order differential

operator Axh in Lp,h, 1 < p <∞, via the real interpolation method. The alternative

method of investigation adopted in (Ashyralyev and Sobolevskii, 1994), (Ashyralyev

and Sobolevskii, 2004), based on estimates of fundamental solution of the resolvent

equation for the operator Axh, allows us to consider also the cases p = 1 and p =∞.

From that it follows Axh was the strongly positive operator in the space W 2α
p,h for all

0 < 2α < 1, 1 ≤ p <∞.

In (Ashyralyev and Yaz, 2006), A. Ashyralyev and N. Yaz investigated the

differential operator Ax defined by the formula

Axu = −a(x)
d2u

dx2
+ δu (1.4)

with domain

D(Ax) = {u ∈ C(2)[0, l] : u(0) = u(µ), u′(0) = u′(l), l/2 ≤ µ ≤ l}. (1.5)

Here, a(x) was a smooth function defined on the segment [0, l] and a(x) ≥ a >

0. They proved that Ax was the strongly positive operator in C [0, l] . For α ∈

(0, 1
2

), the norms of the space Eα(C [0, l] , Ax) and the Hölder space C2α [0, l] were

equivalent. It follows that Ax was the strongly positive operator in C2α [0, l] .

Ashyralyev A., Nalbant N. and Sozen Y. considered in (Ashyralyev et al.,

2014b) the difference operator defined by formula

Axhu
h =

{
−a(xk)

uk+1 − 2uk + uk−1
h2

+ δuk

}M−1
1

, uh = {uk}M0 ,Mh = l (1.6)

with u0 = u`, u1−u0 = uN −uN−1, where ` =
[
µ
h

]
, [·] was the greatest integer func-

tion. This operator was a first order of approximation of the differential operator Ax

defined by formula (1.4) with domain D(Ax) = {u ∈ C(2)[0, l] : u(0) = u(µ), u′(0) =
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u′(l), l/2 ≤ µ ≤ l}. They proved that Axh was the strongly positive operator in Ch.

For α ∈ (0, 1
2

), the norms of the space Eα(Ch, A
x
h) and the Hölder space C2α

h were

equivalent uniformly in h. It follows that Axh was the strongly positive operator in

C2α
h .

Finally, a survey of results in fractional spaces generated by positive operators

and their applications to partial differential equations was given in (Ashyralyev,

2015).

In the present thesis, we will study the positivity of the differential operator

Ax defined by the formula

Axu(x) = −uxx(x) + δu(x), δ > 0, 0 < x < 1 (1.7)

with domain

D(Ax) =
{
u ∈ C2 [0, 1] : u (0) = 0, u(1) = u (µ) , 0 ≤ µ < 1

}
,

where δ > 0. The structure of fractional spaces generated by this differential operator

will be investigated. We will discuss their applications to theory of local and nonlocal

boundary value problems for parabolic and elliptic differential equations.

Let us briefly describe the contents of the various chapters of the thesis. It

consists of five chapters.

First chapter is the introduction.

Second chapter considers the differential operator Ax defined by formula

(1.7) .

We will study Green’s function of the differential operator Ax defined by formula

(1.7) . Therefore, we consider the resolvent of the operator −Ax, that is, we consider

the operator equation

Axu+ λu = f (1.8)

or

d2u(x)

dx2
+ δu(x) + λu(x) = f(x), 0 < x < 1, (1.9)

u (0) = 0, u(1) = u (µ) , 0 ≤ µ < 1.

Pointwise estimates for Green’s function of the differential operator Ax defined by

formula (1.7) are established.
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It will be established the positivity of the differential operator Ax in C [0, 1] .

The structure of fractional spaces Eα,∞(C[0, 1], Ax) will be investigated. It is es-

tablished that for any 0 < α < 1/2 the norms in the spaces Eα,∞(C[0, 1], Ax) and

C2α [0, 1] are equivalent. This result is permitted us to prove the positivity of Ax in

C2α [0, 1] (0 < α < 1/2). In applications, we will obtain new coercive inequalities for

the solution of local and nonlocal boundary value problems for elliptic and parabolic

equations.

Third chapter establishes the positivity of the differential operator Ax in

L1 [0, 1] . The structure of fractional spaces Eα,1(L1[0, 1], Ax) will be investigated. It

is established that for any 0 < α < 1/2 the norms in the spaces Eα,1(L1[0, 1], Ax)

and W 2α
1 [0, 1] are equivalent. This result permits us to prove the positivity of Ax in

W 2α
1 [0, 1] (0 < α < 1/2). In applications, we will obtain new coercive inequalities for

the solution of local and nonlocal boundary value problems for elliptic and parabolic

equations.

Fourth chapter establishes the positivity of the differential operator Ax in

Lp [0, 1] . The structure of fractional spaces Eα,p(Lp[0, 1], Ax) will be investigated. It

is established that for any 0 < α < 1/2 the norms in the spaces Eα,p(Lp[0, 1], Ax)

and W 2α
p [0, 1] are equivalent. This result allows us to prove the positivity of Ax in

W 2α
p [0, 1] (0 < α < 1/2). In applications, we will obtain new coercive inequalities for

the solution of local and nonlocal boundary value problems for elliptic and parabolic

equations.

Fifth chapter contains conclusions.



CHAPTER 2

THE POSITIVITY OF THE SECOND ORDER

DIFFERENTIAL OPERATOR WITH THE NONLOCAL

CONDITION

In this chapter, we consider the differential operator defined by formula

(1.7) .We will study Green’s function of this operator. Pointwise estimates for

Green’s function of the differential operator Ax defined by formula (1.7) are es-

tablished. The positivity of the differential operator Ax defined by formula (1.7)

in C [0, 1] is established. The structure of fractional spaces Eα,∞(C[0, 1], Ax) will be

investigated. It is established that for any 0 < α < 1/2 the norms in the spaces

Eα,∞(C[0, 1], Ax) and C2α [0, 1] are equivalent. This result permits us to prove the

positivity of Ax in C2α [0, 1] (0 < α < 1/2). In applications, we will obtain new

coercive inequalities for the solution of local and nonlocal boundary value problems

for elliptic and parabolic equations.

2.1 GREEN’S FUNCTION AND POSITIVITY OF AX DEFINED BY

FORMULA (1.7) IN C [0, 1]

First, we will construct Green’s function of the differential operator Ax defined

by formula (1.7) .

Theorem 2.1.1. Let λ > 0. Then, the following equation

Axu+ λu = f (2.1)

8
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is uniquely solvable, and the following formula holds:

u(x) = (Ax + λ)−1f(x) =

1∫
0

G(x, s, µ;λ+ δ)f(s)ds, (2.2)

where

G(x, s, µ;λ+ δ) = −(e−
√
δ+λ(1−x) − e−

√
δ+λ(1+x))

T

2
√
δ + λ

(e−
√
δ+λ(1−s) − e−

√
δ+λ(1+s))

×[(1− e−
√
δ+λ(1−µ))−1(1 + e−

√
δ+λ(1+µ))−1(e−

√
δ+λ(1−µ) − e−

√
δ+λ(1+µ)) + 1]

+(e−
√
δ+λ(1−x) − e−

√
δ+λ(1+x))(1− e−

√
δ+λ(1−µ))−1(1 + e−

√
δ+λ(1+µ))−1

1

2
√
δ + λ

×(e−
√
δ+λ|µ−s| − e−

√
δ+λ(µ+s)) +

1

2
√
δ + λ

(e−
√
δ+λ|x−s| − e−

√
δ+λ(x+s)). (2.3)

Here,

T = (1− e−2
√
δ+λ)−1.

The function G(x, s;λ+ δ) is called Green’s function of resolvent equation (2.1).

Proof. We see that problem (1.9) can be obviously rewritten as the equivalent

nonlocal boundary value problem for second order linear differential equation

−d
2u

dx2
+ (δ + λ)u = f(x), 0 < x < 1, u (0) = 0, u(1) = u (µ) , 0 ≤ µ < 1.

It is well-known that the following formula

u(x) = T
{

(e−
√
δ+λx − e−

√
δ+λ(2−x))ϕ+ (e−

√
δ+λ(1−x) − e−

√
δ+λ(1+x))ψ (2.4)

−
(
e−
√
δ+λ(1−x) − e−

√
δ+λ(1+x)

) 1

2
√
δ + λ

1∫
0

(
e−
√
δ+λ(1−s) − e−

√
δ+λ(1+s)

)
f(s)ds


+

1

2
√
δ + λ

1∫
0

(
e−
√
δ+λ|x−s| − e−

√
δ+λ(x+s)

)
f(s)ds

holds for the solution of the boundary value problem

−d
2u

dx2
+ (δ + λ)u = f(x), 0 < x < 1, u(0) = ϕ, u(1) = ψ

for the second-order linear differential equation. Applying formula (2.4) and local

condition u (0) = ϕ = 0 and nonlocal boundary condition u(1) = u (µ) = ψ, we get

ψ = T
{

(e−
√
δ+λ(1−µ) − e−

√
δ+λ(1+µ))ψ − (e−

√
δ+λ(1−µ) − e−

√
δ+λ(1+µ))
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× 1

2
√
δ + λ

1∫
0

(
e−
√
δ+λ(1−s) − e−

√
δ+λ(1+s)

)
f(s)ds


+

1

2
√
δ + λ

1∫
0

(
e−
√
δ+λ|µ−s| − e−

√
δ+λ(µ+s)

)
f(s)ds.

From that it follows that

ψ = −(1− e−
√
δ+λ(1−µ))−1(1 + e−

√
δ+λ(1+µ))−1(e−

√
δ+λ(1−µ) − e−

√
δ+λ(1+µ)) (2.5)

× 1

2
√
δ + λ

1∫
0

(
e−
√
δ+λ(1−s) − e−

√
δ+λ(1+s)

)
f(s)ds

+(1−e−
√
δ+λ(1−µ))−1(1+e−

√
δ+λ(1+µ))−1

T−1

2
√
δ + λ

1∫
0

(
e−
√
δ+λ|µ−s| − e−

√
δ+λ(µ+s)

)
f(s)ds.

Finally, applying formulas (2.4)-(2.5), we obtain formula (2.2). This finishes the

proof of Theorem 2.1.1.

Second, we will study Green’s function of the differential operator Ax defined by

formula (1.7) .

Lemma 2.1.2. For all 0 ≤ x ≤ 1, the following formula holds

1∫
0

G(x, s, µ;λ+ δ)ds =
1

δ + λ
− 1

δ + λ
e−
√
δ+λx (2.6)

−e
−
√
δ+λµ

δ + λ

(
e−
√
δ+λ(1−x) − e−

√
δ+λ(1+x)

)(
1 + e−

√
δ+λ(1+µ)

)−1
.

Proof Applying formula (2.3) and taking the integral, we get

1∫
0

G(x, s, µ;λ+ δ)ds = −
1∫

0

(
e−
√
δ+λ(1−s) − e−

√
δ+λ(1+s)

)
ds

×
(
e−
√
δ+λ(1−x) − e−

√
δ+λ(1+x)

) T

2
√
δ + λ

×
[(

1− e−
√
δ+λ(1−µ)

)−1 (
1 + e−

√
δ+λ(1+µ)

)−1 (
e−
√
δ+λ(1−µ) − e−

√
δ+λ(1+µ)

)
+ 1

]
+
(
e−
√
δ+λ(1−x) − e−

√
δ+λ(1+x)

)(
1− e−

√
δ+λ(1−µ)

)−1 (
1 + e−

√
δ+λ(1+µ)

)−1 1

2
√
δ + λ
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×
1∫

0

(
e−
√
δ+λ|µ−s| − e−

√
δ+λ(µ+s)

)
ds+

1

2
√
δ + λ

1∫
0

(
e−
√
δ+λ|x−s| − e−

√
δ+λ(x+s)

)
ds

= −
(
e−
√
δ+λ(1−x) − e−

√
δ+λ(1+x)

) T

2(δ + λ)

(
1− 2e−

√
δ+λ + e−2

√
δ+λ
)

×
[(

1− e−
√
δ+λ(1−µ)

)−1 (
1 + e−

√
δ+λ(1+µ)

)−1 (
e−
√
δ+λ(1−µ) − e−

√
δ+λ(1+µ)

)
+ 1

]
+(e−

√
δ+λ(1−x) − e−

√
δ+λ(1+x))(1− e−

√
δ+λ(1−µ))−1(1 + e−

√
δ+λ(1+µ))−1

× 1

2(δ + λ)

(
2− 2e−

√
δ+λµ − e−

√
δ+λ(1−µ) + e−

√
δ+λ(1+µ)

)
+

1

2(δ + λ)

(
2− 2e−

√
δ+λx − e−

√
δ+λ(1−x) + e−

√
δ+λ(1+x)

)
=

1

δ + λ
− 1

δ + λ
e−
√
δ+λx +

1

2 (δ + λ)
(e−
√
δ+λ(1−x) − e−

√
δ+λ(1+x))

×(1− e−
√
δ+λ(1−µ))−1(1 + e−

√
δ+λ(1+µ))−1∆,

where

∆ = −
(

1− e−
√
δ+λ(1−µ)

)(
1 + e−

√
δ+λ(1+µ)

)
− T

(
1− e−

√
δ+λ
)2

×
[
e−
√
δ+λ(1−µ) − e−

√
δ+λ(1+µ) +

(
1− e−

√
δ+λ(1−µ)

)(
1 + e−

√
δ+λ(1+µ)

)]
+2− 2e−

√
δ+λµ − e−

√
δ+λ(1−µ) + e−

√
δ+λ(1+µ)

= −2e−
√
δ+λµ

(
1− e−

√
δ+λ(1−µ)

)
.

This finishes the proof of Lemma 2.1.2.

Lemma 2.1.3. For all λ ∈ Rϕ = {λ : |arg λ| ≤ ϕ, ϕ < π/2}, expressions 1 +

e−
√
δ+λ(1+µ), 1− e−

√
δ+λ(1−µ) and 1− e−2

√
δ+λ are not equal to zero.

Proof Let λ = ρeiϕ = ρ cosϕ+ i sinϕ. Then,

δ + λ = δ + ρ cosϕ+ iρ sinϕ = |δ + λ| eiψ

and

|δ + λ| =
√
δ2 + 2ρ cosϕ+ ρ2 ≥

√
δ2 + |λ|2.

Therefore, (δ + λ)1/2 =
∣∣∣(δ + λ)1/2

∣∣∣ eiψ/2, ∣∣∣(δ + λ)1/2
∣∣∣ = |δ + λ|1/2

√
2
2

. Here, tanψ =

ρ sinϕ
δ+ρ cosϕ

≤ tanϕ. From that it follows |δ + λ|1/2 ≥
(
δ2 + |λ|2

)1/4
and we have that∣∣∣(δ + λ)1/2

∣∣∣ ≥ (δ2 + |λ|2
)1/4 √2

2
.Thus, using the triangle inequality, we obtain∣∣∣1− e−2√δ+λ∣∣∣ ≥ 1−
∣∣∣e−2√δ+λ∣∣∣ ≥ 1− e−2(δ2+|λ|

2)
1/4√2

2 > 0.
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Similarly,
∣∣∣1 + e−

√
δ+λ(1+µ)

∣∣∣ > 0 and
∣∣∣1− e−√δ+λ(1−µ)∣∣∣ > 0. Lemma 2.1.3 is proved.

Lemma 2.1.4. For any λ ∈ Rϕ = {λ : |arg λ| ≤ ϕ, ϕ < π/2}, µ ∈ [0, 1) and

x ∈ [0, 1], the following pointwise estimates hold

|G(x, s, µ;λ+ δ)| ≤ M1(δ, µ)(
δ2 + |λ|2

)1/4 e−(δ2+|λ|2)
1/4√2

2
|x−s| (2.7)

for 0 ≤ x ≤ 1+µ
2

and

|G(x, s, µ;λ+ δ)|

≤ M1(δ, µ)(
δ2 + |λ|2

)1/4



e−(δ2+|λ|2)
1/4√2

2
(1−x+µ−s), 0 ≤ s ≤ µ,

e−(δ2+|λ|2)
1/4√2

2
(1−x+s−µ), µ ≤ s ≤ x+ µ−1

2
,

e−(δ2+|λ|2)
1/4√2

2
|x−s|, x+ µ−1

2
≤ s ≤ 1

(2.8)

for 1+µ
2
≤ x ≤ 1.

Proof. Let A = min{2− x− s, 1− x+ |µ− s| , |x− s|}. First, we prove that

2− x− s ≥ |x− s| (2.9)

for any x, s ∈ [0, 1]. Actually, we have that 2s ≤ 2. By using properties of inequality,

we get

s− x ≤ 2− s− x. (2.10)

Since 2x ≤ 2, it follows

x− s ≤ 2− x− s. (2.11)

From estimates (2.10) and (2.11), it follows (2.9).

Applying (2.9), we obtain that min{2− x− s, |x− s|} = |x− s| and A = min{1−

x+ |µ− s| , |x− s|}.

Second, we obtain A. We consider two cases: 0 ≤ x ≤ 1+µ
2

and 1+µ
2
≤ x ≤ 1.

Let 0 ≤ x ≤ 1+µ
2

for any s ∈ [0, 1].

Assume that 0 ≤ s ≤ µ. Then, |µ− s| = µ− s and A = min{1− x+ µ− s, |x− s|}.

Since x ≤ 1+µ
2
, we have that

x− s ≤ 1− x+ µ− s. (2.12)
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By adding inequalities s ≤ 1 and s ≤ µ side by side, we get 2s ≤ 1 + µ. Then,

s− x ≤ 1− x+ µ− s. (2.13)

From estimates (2.12) and (2.13) it follows

|x− s| ≤ 1− x+ µ− s. (2.14)

Assume that µ ≤ s ≤ 1. Then, |µ− s| = s− µ and A = min{1− x+ s− µ, |x− s|}.

Since µ ≤ 1, adding s− x both side, we get

µ+ s− x ≤ 1 + s− x

or

|x− s| = s− x ≤ 1− x+ s− µ.

For s ≥ x, we have that |x− s| = s− x and

|x− s| ≤ 1− x+ s− µ. (2.15)

Let s ≤ x, then |x− s| = x − s. By adding inequalities µ ≤ s and x ≤ 1+µ
2

side by

side, we obtain

x+ µ ≤ 1 + µ

2
+ s.

Therefore,

2x− 2s ≤ 1 + µ− 2µ

or

x− s ≤ 1− x+ s− µ. (2.16)

From estimates (2.15) and (2.16), it follows

|x− s| ≤ 1− x+ µ− s. (2.17)

Using estimates (2.14) and (2.17), we get

A = min{1− x+ |µ− s| , |x− s|} = |x− s| (2.18)
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for any 0 ≤ x ≤ 1+µ
2

and s ∈ [0, 1]. By Lemma 2.1.3 and estimate (2.18), we have

the following estimate

|G(x, s, µ;λ+ δ)| ≤ M1(δ, µ)(
δ2 + |λ|2

)1/4 e−(δ2+|λ|2)
1/4√2

2
|x−s| (2.19)

for any 0 ≤ x ≤ 1+µ
2

and s ∈ [0, 1].

Let 1+µ
2
≤ x ≤ 1 for any s ∈ [0, 1]. Suppose that 0 ≤ s ≤ µ. Then, |x− s| =

x− s and we have

2x ≥ 1 + µ,

x− s ≥ 1 + µ− x− s.

Then,

A = 1− x+ µ− s. (2.20)

Assume that µ ≤ s ≤ 1+µ
2
. Then, |x− s| = x− s. Since

1− x+ s− µ = x− s,

2s = 2x+ µ− 1,

s = x+
µ− 1

2
,

we have that

1− x+ s− µ ≤ x− s = |x− s|

for µ ≤ s ≤ x+ µ−1
2

and

1− x+ s− µ ≥ x− s = |x− s|

for x+ µ−1
2
≤ s ≤ 1+µ

2
. Therefore,

A =

 1− x+ s− µ, µ ≤ s ≤ x+ µ−1
2
,

|x− s| , x+ µ−1
2
≤ s ≤ 1+µ

2
.

(2.21)

Assume that 1+µ
2
≤ s ≤ 1. For x > s, we have that

|x− s| = x− s, |µ− s| = s− µ.

Applying inequalities x ≤ 1 and 1+µ
2
≤ s, we get

x+
1 + µ

2
≤ 1 + s.
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Then,

2x+ 1 + µ ≤ 2 + 2s

or

|x− s| = x− s ≤ 1− x+ s− µ. (2.22)

For x < s, we have that

|x− s| = s− x, |µ− s| = s− µ.

Applying µ ≤ 1, we obtain

µ+ s− x ≤ 1 + s− x

or

|x− s| = s− x ≤ 1− x+ s− µ. (2.23)

From estimates (2.22) and (2.23) it follows

|x− s| ≤ 1− x+ s− µ. (2.24)

By using (2.20), (2.21), and (2.24), we get

A =



1− x+ µ− s, 0 ≤ s ≤ µ,

1− x+ s− µ, µ ≤ s ≤ x+ µ−1
2
,

|x− s| , x+ µ−1
2
≤ s ≤ 1.

(2.25)

for any 1+µ
2
≤ x ≤ 1 and s ∈ [0, 1]. Lemma 2.1.3 and formula (2.25) yields the

following estimate

|G(x, s, µ;λ+ δ)| ≤ M1(δ, µ)(
δ2 + |λ|2

)1/4

×



e−(δ2+|λ|2)
1/4√2

2
(1−x+µ−s), 0 ≤ s ≤ µ,

e−(δ2+|λ|2)
1/4√2

2
(1−x+s−µ), µ ≤ s ≤ x+ µ−1

2
,

e−(δ2+|λ|2)
1/4√2

2
|x−s|, x+ µ−1

2
≤ s ≤ 1

for any 1+µ
2
≤ x ≤ 1 and s ∈ [0, 1]. This finishes the proof of Lemma 2.1.4.
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Lemma 2.1.5. For any λ ∈ Rϕ = {λ : |arg λ| ≤ ϕ, ϕ < π/2}, µ ∈ [0, 1) and

x ∈ [0, 1], the following estimate

1∫
0

|G(x, s, µ;λ+ δ)| ds ≤ M(δ, µ)

1 + |λ|
(2.26)

is valid.

Proof. Let 0 ≤ x ≤ 1+µ
2

for any s ∈ [0, 1]. Then, applying (2.19), we get

1∫
0

|G(x, s, µ;λ+ δ)| ds ≤ M1(δ, µ)(
δ2 + |λ|2

)1/4
1∫

0

e−(δ2+|λ|2)
1/4√2

2
|x−s|ds

=
M1(δ, µ)(
δ2 + |λ|2

)1/4
 x∫

0

e−(δ2+|λ|2)
1/4√2

2
(x−s)ds+

1∫
x

e−(δ2+|λ|2)
1/4√2

2
(s−x)ds


≤ M2(δ, µ)(

δ2 + |λ|2
)1/2 . (2.27)

Estimate (2.26) for this case follows from the last estimate and the following in-

equality
1(

δ2 + |λ|2
)1/2 ≤ M1(δ)

1 + |λ|
. (2.28)

Let 1+µ
2
≤ x ≤ 1 for any s ∈ [0, 1]. Then, from (2.8) it follows that

1∫
0

|G(x, s, µ;λ+ δ)| ds ≤ M1(δ, µ)(
δ2 + |λ|2

)1/4
 µ∫

0

e−(δ2+|λ|2)
1/4√2

2
(1−x+µ−s)ds

+

x+µ−1
2∫

µ

e−(δ2+|λ|2)
1/4√2

2
(1−x+s−µ)ds+

1∫
x+µ−1

2

e−(δ2+|λ|2)
1/4√2

2
|x−s|ds


≤ M3(δ, µ)(

δ2 + |λ|2
)1/2 . (2.29)

Estimate (2.30) for this case follows from estimate (2.29) and inequality (2.28). This

ends the proof of Lemma 2.1.5.
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Lemma 2.1.6. For any λ ∈ Rϕ = {λ : |arg λ| ≤ ϕ, ϕ < π/2}, µ ∈ [0, 1) and

x ∈ [0, 1], the following estimate for the derivative of Green’s function of resolvent

equation (2.1) with respect to x holds

|Gx(x, s, µ;λ+ δ)| ≤M2(δ, µ)e−(δ2+|λ|2)
1/4√2

2
|x−s| (2.30)

for 0 ≤ x ≤ 1+µ
2
,

|Gx(x, s, µ;λ+ δ)| ≤M3(δ, µ)

×



e−(δ2+|λ|2)
1/4√2

2
(1−x+µ−s), 0 ≤ s ≤ µ,

e−(δ2+|λ|2)
1/4√2

2
(1−x+s−µ), µ ≤ s ≤ x+ µ−1

2
,

e−(δ2+|λ|2)
1/4√2

2
|x−s|, x+ µ−1

2
≤ s ≤ 1

(2.31)

for 1+µ
2
< x ≤ 1.

Proof. Using equation (2.3), we get

Gx(x, s, µ;λ+ δ) = −T
2

(e−
√
δ+λ(1−x) + e−

√
δ+λ(1+x))(e−

√
δ+λ(1−s) − e−

√
δ+λ(1+s))

×[(1− e−
√
δ+λ(1−µ))−1(1 + e−

√
δ+λ(1+µ))−1(e−

√
δ+λ(1−µ) − e−

√
δ+λ(1+µ)) + 1]

+
1

2
(e−
√
δ+λ(1−x) + e−

√
δ+λ(1+x))(1− e−

√
δ+λ(1−µ))−1(1 + e−

√
δ+λ(1+µ))−1

×(e−
√
δ+λ|µ−s| − e−

√
δ+λ(µ+s)) +

1

2
(e−
√
δ+λ(s−x) + e−

√
δ+λ(x+s)) (2.32)

for x− s < 0. If x− s > 0, then using equation (2.3), we get

Gx(x, s, µ;λ+ δ) = −T
2

(e−
√
δ+λ(1−x) + e−

√
δ+λ(1+x))(e−

√
δ+λ(1−s) − e−

√
δ+λ(1+s))

×[(1− e−
√
δ+λ(1−µ))−1(1 + e−

√
δ+λ(1+µ))−1(e−

√
δ+λ(1−µ) − e−

√
δ+λ(1+µ)) + 1]

+
1

2
(e−
√
δ+λ(1−x) + e−

√
δ+λ(1+x))(1− e−

√
δ+λ(1−µ))−1(1 + e−

√
δ+λ(1+µ))−1

×(e−
√
δ+λ|µ−s| − e−

√
δ+λ(µ+s)) +

1

2
(−e−

√
δ+λ(x−s) + e−

√
δ+λ(x+s)). (2.33)

There are two possible cases: 0 ≤ x ≤ 1+µ
2

and 1+µ
2

< x ≤ 1. In the first case, we

will estimate (2.18). By Lemma 2.1.3 and estimate (2.18), we have the following

estimate from (2.32) and (2.33).

|Gx(x, s, µ;λ+ δ)| ≤M1(δ, µ)e−(δ2+|λ|2)
1/4√2

2
|x−s|. (2.34)
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In the second case, from (2.32), by Lemma 2.1.3 and formula (2.25) we have the

following estimate

|Gx(x, s, µ;λ+ δ)|

≤M1(δ, µ)



e−(δ2+|λ|2)
1/4√2

2
(1−x+µ−s), 0 ≤ s ≤ µ,

e−(δ2+|λ|2)
1/4√2

2
(1−x+s−µ), µ ≤ s ≤ x+ µ−1

2
,

e−(δ2+|λ|2)
1/4√2

2
|x−s|, x+ µ−1

2
≤ s ≤ 1.

(2.35)

Lemma 2.1.6 is proved.

Third, the positivity of Ax in C [0, 1] is investigated.

Theorem 2.1.7. For all λ ∈ Rϕ = {λ : |arg λ| ≤ ϕ, ϕ < π/2}, the resolvent

(λI + Ax)−1 defined by formula (2.4) is subject to the bound

∥∥(λI + Ax)−1
∥∥
C[0,1]→C[0,1]

=
M(ϕ, δ)

1 + |λ|
.

Proof. Using formula (2.4) and the triangle inequality, we get

|u(x)| ≤
1∫

0

|G(x, s, µ;λ+ δ)| dsmax
0≤s≤1

|f(s)|

for any x ∈ [0, 1] . So, we get

max
x∈[0,1]

|u(x)| ≤ max
x∈[0,1]

1∫
0

|G(x, s, µ;λ+ δ)| ds ‖f‖C[0,1] .

Then, we have

∥∥(Ax + λ)−1f
∥∥
C[0,1]

≤ M(ϕ, δ)

1 + |λ|
‖f‖C[0,1] .

From that we obtain

∥∥(Ax + λ)−1
∥∥
C[0,1]→C[0,1]

≤ M(ϕ, δ)

1 + |λ|
.

This is the end of Theorem 2.1.7.
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Clearly, the operators Ax and its resolvent (λ + Ax)−1 commute. Thus, from

the definition of the norm in the space Eα(C[0, 1], Ax) it follows that

∥∥(λ+ Ax)−1
∥∥
Eα(C[0,1],Ax)→Eα(C[0,1],Ax)

≤
∥∥(λ+ Ax)−1

∥∥
C[0,1]→C[0,1]

.

Hence, by using Theorem 2.1.7, we obtain the positivity of the operator Ax in the

fractional spaces Eα(C[0, 1], Ax).

2.2 THE STRUCTURE OF FRACTIONAL SPACES Eα(C[0, 1], AX), POS-

ITIVITY OF AX IN
◦
C

2α

[0, 1]

Now, we will study the positivity of Ax in
◦
C

2α

[0, 1]. We have the following

theorem.

Theorem 2.2.1. Let α ∈ (0, 1/2). Then, the norms of the spaces Eα(C[0, 1], Ax)

and
◦
C

2α

[0, 1] are equivalent.

Proof. For any λ ≥ 0, we have the following equality

Ax(λ+ Ax)−1f(x) = f(x)− λ(λ+ Ax)−1f(x).

By formula (2.2), we can write

Ax(λ+ Ax)−1f(x) = f(x)− λ
1∫

0

G(x, s, µ;λ+ δ)f(s)ds

=
δ

δ + λ
f(x) +

λ

δ + λ
f(x)− λ

1∫
0

G(x, s, µ;λ+ δ)f(s)ds. (2.36)

From equation (2.6) it follows the following formula

1

δ + λ
=

1∫
0

G(x, s, µ;λ+ δ)ds+
1

δ + λ
e−
√
δ+λx

+
e−
√
δ+λµ

δ + λ
(e−
√
δ+λ(1−x) − e−

√
δ+λ(1+x))(1 + e−

√
δ+λ(1+µ))−1. (2.37)
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Using formulas (2.36) and (2.37), we get

Ax(λ+ Ax)−1f(x) =
δ

δ + λ
f(x) +

λ

δ + λ

[
e−
√
δ+λx (2.38)

+e−
√
δ+λµ(e−

√
δ+λ(1−x) − e−

√
δ+λ(1+x))(1 + e−

√
δ+λ(1+µ))−1

]
f(x)

+λ

1∫
0

G(x, s, µ;λ+ δ) (f(x)− f(s))ds.

Then,

λαAx(λ+ Ax)−1f(x) =
δλα

δ + λ
f(x) +

λα+1

δ + λ

[
e−
√
δ+λx

+e−
√
δ+λµ(e−

√
δ+λ(1−x) − e−

√
δ+λ(1+x))(1 + e−

√
δ+λ(1+µ))−1

]
f(x)

+λα+1

1∫
0

G(x, s, µ;λ+ δ) (f(x)− f(s))ds

= P1(x) + P2(x) + P3(x),

where

P1(x) =
δλα

δ + λ
f(x),

P2(x) =
λα+1

δ + λ

[
e−
√
δ+λx + e−

√
δ+λµ(e−

√
δ+λ(1−x) − e−

√
δ+λ(1+x))

× (1 + e−
√
δ+λ(1+µ))−1

]
f(x),

P3(x) = λα+1

1∫
0

G(x, s, µ;λ+ δ) (f(x)− f(s))ds.

Using the definition of norm space
◦
C

2α

[0, 1] and λαδ1−α

δ+λ
≤ 1, we can write

|P1(x)| ≤ δαλαδ1−α

δ + λ
|f(x)| ≤ δα max

x∈[0,1]
|f(x)| ≤ δα ‖f‖ ◦

C
2α

[0,1]

for any x ∈ [0, 1] . Then,

max
x∈[0,1]

|P1(x)| ≤ δα ‖f‖ ◦
C

2α

[0,1]

or

‖P1‖C[0,1] ≤ δα ‖f‖ ◦
C

2α

[0,1]
. (2.39)

We have that

P2(x) =
λα+1

δ + λ
e−
√
δ+λx [f(x)− f(0)]
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+
λα+1

δ + λ
e−
√
δ+λ(1+µ−x)(1 + e−

√
δ+λ(1+µ))−1 [f(x)− f(1)]

+
λα+1

δ + λ
e−
√
δ+λ(1+µ+x)(1 + e−

√
δ+λ(1+µ))−1 [−f(x) + f(1)]

+
λα+1

δ + λ
e−
√
δ+λ(1+µ−x)(1 + e−

√
δ+λ(1+µ))−1 [f(µ)− f(0)]

− λ
α+1

δ + λ
e−
√
δ+λ(1+µ+x)(1 + e−

√
δ+λ(1+µ))−1f(1).

Then, using the triangle inequality and the estimate pαe−pt ≤ M
tα

, p > 0, we can

write

|P2(x)| ≤
(

λ

δ + λ

)α+1

(δ + λ)α+1 e−
√
δ+λx |f(x)− f(0)|

x2α
x2α

+

(
λ

δ + λ

)α+1

(δ + λ)α+1 e−
√
δ+λ(1+µ−x)(1 + e−

√
δ+λ(1+µ))−1

|f(x)− f(1)|
(1− x)2α

(1− x)2α

+

(
λ

δ + λ

)α+1

(δ + λ)α+1 e−
√
δ+λ(1+µ+x)(1 + e−

√
δ+λ(1+µ))−1

|f(x)− f(1)|
(1− x)2α

(1− x)2α

+

(
λ

δ + λ

)α+1

(δ + λ)α+1 e−
√
δ+λ(1+µ+x)(1 + e−

√
δ+λ(1+µ))−1

|f(µ)− f(0)|
µ2α

µ2α

+

(
λ

δ + λ

)α+1

(δ + λ)α+1 e−
√
δ+λ(1+µ+x)(1 + e−

√
δ+λ(1+µ))−1f(1)

≤M ‖f‖ ◦
C

2α

[0,1]
+M ‖f‖ ◦

C
2α

[0,1]
+M ‖f‖ ◦

C
2α

[0,1]
+M ‖f‖ ◦

C
2α

[0,1]

+ max
x∈[0,1]

|f(x)| 1

(1 + µ+ x)2α
≤M1 ‖f‖ ◦

C
2α

[0,1]

for any x ∈ [0, 1] . Thus,

‖P2‖C[0,1] ≤M ‖f‖ ◦
C

2α

[0,1]
. (2.40)

Now, we will estimate P3(x). From the estimate (2.19) for 0 ≤ x ≤ µ and µ < x ≤
1+µ
2

, we get

|P3(x)| ≤ λα+1

1∫
0

|G(x, s, µ;λ+ δ)| |f(x)− f(s)| ds

≤ M1(δ, µ)λα+1(
δ2 + |λ|2

)1/4
1∫

0

e−(δ2+|λ|2)
1/4√2

2
|x−s| |f(x)− f(s)| ds

≤ M1(δ, µ)λα+1(
δ2 + |λ|2

)1/4
1∫

0

e−(δ2+|λ|2)
1/4√2

2
|x−s| |f(x)− f(s)| |x− s|

2α

|x− s|2α
ds
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≤M ‖f‖C2α[0,1]

M1(δ, µ)λα+1(
δ2 + |λ|2

)1/4
1∫

0

e−(δ2+|λ|2)
1/4√2

2
|x−s| |x− s|2α ds.

Using the substitution y =
(
δ2 + |λ|2

)1/4 √2
2
|x− s| , we obtain

|P3(x)| ≤M2 ‖f‖ ◦
C

2α

[0,1]

λα+1(
δ2 + |λ|2

) 1+α
2

∞∫
0

e−yy2αds

≤M2 ‖f‖ ◦
C

2α

[0,1]

λα+1Γ (2α + 1)(
δ2 + |λ|2

) 1+α
2

≤M2 ‖f‖ ◦
C

2α

[0,1]
Γ (2α + 1) .

Using estimate (2.8) for 1+µ
2
< x ≤ 1, we get

P3(x) ≤ λα+1

1∫
0

G(x, s, µ;λ+ δ) (f(x)− f(s)) ds = P31(x) + P32(x) + P32(x),

where

P31(x) =
M1(δ, µ)λα+1(
δ2 + |λ|2

)1/4
µ∫

0

e−(δ2+|λ|2)
1/4√2

2
(1−x+µ−s) (f(x)− f(s)) ds,

P32(x) =
M1(δ, µ)λα+1(
δ2 + |λ|2

)1/4
x∫
µ

e−(δ2+|λ|2)
1/4√2

2
(x−s) (f(x)− f(s)) ds,

P33(x) =
M1(δ, µ)λα+1(
δ2 + |λ|2

)1/4
1∫

x

e−(δ2+|λ|2)
1/4√2

2
(s−x) (f(x)− f(s)) ds.

Let us estimate P31(x).

|P31(x)| = M1(δ, µ)λα+1(
δ2 + |λ|2

)1/4
µ∫

0

e−(δ2+|λ|2)
1/4√2

2
(1−x+µ−s) (|f(x)− f(1) + f(µ)− f(s)|) ds.

By triangle inequality, we have

|P31(x)| ≤ M1(δ, µ)λα+1(
δ2 + |λ|2

)1/4
µ∫

0

e−(δ2+|λ|2)
1/4√2

2
(1−x+µ−s) [|f(x)− f(1)|+ |f(µ)− f(s)|] ds.

Using the definition of norm, the following inequality holds

|P31(x)| ≤ M1(δ, µ)λα+1(
δ2 + |λ|2

)1/4 ‖f‖ ◦C2α

[0,1]

 µ∫
0

e−(δ2+|λ|2)
1/4√2

2
(1−x+µ−s)(1− x)2αds

+

µ∫
0

e−(δ2+|λ|2)
1/4√2

2
(1−x+µ−s)(µ− s)2αds


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≤ M1(δ, µ)λα+1(
δ2 + |λ|2

)1/4 ‖f‖ ◦C2α

[0,1]
e−(δ2+|λ|2)

1/4√2
2
(1−x)(1− x)2α

 µ∫
0

e−(δ2+|λ|2)
1/4√2

2
(µ−s)ds

+e−(δ2+|λ|2)
1/4√2

2
(1−x)

µ∫
0

e−(δ2+|λ|2)
1/4√2

2
(µ−s)(µ− s)2αds

 .
Let

I1 = e−(δ2+|λ|2)
1/4√2

2
(1−x)(1− x)2α,

I2 =

µ∫
0

e−(δ2+|λ|2)
1/4√2

2
(µ−s)ds,

I3 =

µ∫
0

e−(δ2+|λ|2)
1/4√2

2
(1−x+µ−s)(µ− s)2αds.

Hence, by the inequality e−at ≤ M

(at)θ
; 0 < θ < 1, we get

I1 ≤
(1− x)2α((

δ2 + |λ|2
)1/4 √2

2
(1− x)

)2α =
M(

δ2 + |λ|2
)2α/4 .

Taking the integral, we have

I2 ≤

[
1− e−(δ2+|λ|2)

1/4√2
2
µ

]
(
δ2 + |λ|2

)1/4 √2
2

≤ M(
δ2 + |λ|2

)1/4 ,
and for y = (δ2 + |λ|21/4

√
2
2

(µ− s)

I3 ≤
M(

δ2 + |λ|2
) 2α+1

4

∞∫
0

e−yy2αds ≤ MΓ (2α + 1)(
δ2 + |λ|2

) 2α+1
4

≤ M(
δ2 + |λ|2

) 2α+1
4

.

Consequently, if we say e−(δ2+|λ|2)
1/4√2

2
(1−x) ≤ 1, Γ (2α + 1) ≤ 1 and using the

estimates for I1, I2,I3 the following inequality holds

|P31(x)| ≤ M1(δ, µ)λα+1(
δ2 + |λ|2

)1/4 ‖f‖ ◦C2α

[0,1]

 M(
δ2 + |λ|2

)2α/4 · M(
δ2 + |λ|2

)1/4 +
M(

δ2 + |λ|2
) 2α+1

4

 ,
|P31(x)| ≤M2(δ, µ) ‖f‖ ◦

C
2α

[0,1]

λα+1(
δ2 + |λ|2

) 1+α
2

≤M2(δ, µ) ‖f‖ ◦
C

2α

[0,1]
.

Let us estimate P32(x).

P32(x) =
M1(δ, µ)λα+1(
δ2 + |λ|2

)1/4
x∫
µ

e−(δ2+|λ|2)
1/4√2

2
(x−s) (f(x)− f(s)) ds,
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|P32(x)| ≤M ‖f‖ ◦
C

2α

[0,1]

M1(δ, µ)λα+1(
δ2 + |λ|2

)1/4
x∫
µ

e−(δ2+|λ|2)
1/4√2

2
(x−s) (x− s)2α ds.

Using the substitution y =
(
δ2 + |λ|2

)1/4 √2
2

(x− s) , we obtain the following in-

equality

|P32(x)| ≤M2 ‖f‖ ◦
C

2α

[0,1]

λα+1(
δ2 + |λ|2

) 1+α
2

− 0∫
∞

e−yy2αds


≤M2 ‖f‖ ◦

C
2α

[0,1]

λα+1(
δ2 + |λ|2

) 1+α
2

∞∫
0

e−yy2αds

≤M2 ‖f‖ ◦
C

2α

[0,1]

λα+1Γ (2α + 1)(
δ2 + |λ|2

) 1+α
2

≤M3 ‖f‖ ◦
C

2α

[0,1]
Γ (2α + 1) .

Let us estimate P33(x).

P33(x) =
M1(δ, µ)λα+1(
δ2 + |λ|2

)1/4
1∫

x

e−(δ2+|λ|2)
1/4√2

2
(s−x) (f(x)− f(s)) ds.

So,

|P33(x)| ≤M ‖f‖ ◦
C

2α

[0,1]

M1(δ, µ)λα+1(
δ2 + |λ|2

)1/4
1∫

x

e−(δ2+|λ|2)
1/4√2

2
(s−x) |x− s|2α ds.

Using the substitution y =
(
δ2 + |λ|2

)1/4 √2
2

(s− x) , we have the following inequal-

ity

|P33(x)| ≤M2 ‖f‖ ◦
C

2α

[0,1]

λα+1(
δ2 + |λ|2

) 1+α
2

∞∫
0

e−yy2αds

≤M2 ‖f‖ ◦
C

2α

[0,1]

λα+1Γ (2α + 1)(
δ2 + |λ|2

) 1+α
2

≤M3 ‖f‖ ◦
C

2α

[0,1]
Γ (2α + 1) .

Then, we can write the following

max
x∈[0,1]

|P3(x)| ≤ max
x∈[0,1]

|P31(x)|+ max
x∈[0,1]

|P32(x)|+ max
x∈[0,1]

|P33(x)|

or

‖P3‖C[0,1] ≤M (α) ‖f‖ ◦
C

2α

[0,1]
. (2.41)

Using estimates (2.37),(2.39), and (2.40), we get

max
x∈[0,1]

∣∣λαAx(λ+ Ax)−1f(x)
∣∣ ≤M(δ, µ) ‖f‖ ◦

C
2α

[0,1]
+M (α) ‖f‖ ◦

C
2α

[0,1]
(2.42)
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for any λ ≥ 0. Hence,

‖f‖Eα(C[0,1],Ax) ≤M ‖f‖ ◦
C

2α

[0,1]
.

Now, let us prove the reverse inequality. For any positive operator Ax in the Banach

space, we can write

I =

∞∫
0

Ax(λ+ Ax)−2dλ, (2.43)

where I is the identity operator.

From formulas (2.2) and (2.43) it follows that

f(x) =

∞∫
0

(λ+ Ax)−1Ax(λ+ Ax)−1f(x)dλ

=

∞∫
0

1∫
0

G(x, s, µ;λ+ δ)As(λ+ As)−1f(s)dsdλ.

Consequently,

f(x+τ)−f(x) =

∞∫
0

1∫
0

[G(x+ τ, s, µ;λ+ δ)−G(x, s, µ;λ+ δ)]As(λ+As)−1f(s)dsdλ

=

∞∫
0

λ−α
1∫

0

[G(x+ τ, s, µ;λ+ δ)−G(x, s, µ;λ+ δ)]λαAs(λ+ As)−1f(s)dsdλ.

(2.44)

Hence,

|f(x+ τ)− f(x)| ≤

 ∞∫
0

λ−α
1∫

0

|G(x+ τ, s, µ;λ+ δ)−G(x, s, µ;λ+ δ)| dsdλ


×‖f‖Eα(C[0,1],Ax) .

Let

T = τ−2α

 ∞∫
0

λ−α
1∫

0

|G(x+ τ, s, µ;λ+ δ)−G(x, s, µ;λ+ δ)| dsdλ



= τ−2α
∞∫
0

λ−α
x∫

0

|G(x+ τ, s, µ;λ+ δ)−G(x, s, µ;λ+ δ)| dsdλ
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+τ−2α
∞∫
0

λ−α
x+τ∫
x

|G(x+ τ, s, µ;λ+ δ)−G(x, s, µ;λ+ δ)| dsdλ

+τ−2α
∞∫
0

λ−α
1∫

x+τ

|G(x+ τ, s, µ;λ+ δ)−G(x, s, µ;λ+ δ)| dsdλ

= τ−2α
∞∫
0

λ−α
x∫

0

x+τ∫
x

|Gz(z, , s, µ;λ+ δ)| dzdsdλ

+τ−2α
∞∫
0

λ−α
x+τ∫
x

|G(x+ τ, s, µ;λ+ δ)−G(x, s, µ;λ+ δ)| dsdλ

+τ−2α
∞∫
0

λ−α
1∫

x+τ

x+τ∫
x

|Gz(z, , s, µ;λ+ δ)| dzdsdλ

= T1 + T2 + T3.

Here,

T1 = τ−2α
∞∫
0

λ−α
x∫

0

x+τ∫
x

|Gz(z, , s, µ;λ+ δ)| dzdsdλ,

T2 = τ−2α
∞∫
0

λ−α
x+τ∫
x

|G(x+ τ, s, µ;λ+ δ)−G(x, s, µ;λ+ δ)| dsdλ,

T3 = τ−2α
∞∫
0

λ−α
1∫

x+τ

x+τ∫
x

|Gz(z, , s, µ;λ+ δ)| dzdsdλ.

Then, for any x, τ ∈ R+ , we have that

|f(x+ τ)− f(x)|
|τ |−2α

≤ T ‖f‖Eα(C2α[0,1],Ax).

Now, we will prove that

T ≤ M(δ)

2α (1− 2α)
. (2.45)

We will estimate T1, T2 and T3. First, let us estimate T1.

T1 = τ−2α
∞∫
0

λ−α
x∫

0

x+τ∫
x

|Gz(z, , s, µ;λ+ δ)| dzdsdλ

≤ τ−2α
∞∫
0

λ−α
x∫

0

x+τ∫
x

e−(δ2+|λ|2)
1/4√2

2
|z−s|dzdsdλ
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≤ τ−2α
x∫

0

x+τ∫
x

∞∫
0

λ−αe−|λ|
1/2
√
2
2
|z−s|dλdzds,

where

∆(z, s) =

∞∫
0

λ−αe−|λ|
1/2
√
2
2
|z−s|dλ. (2.46)

By changing variable

p = − |λ|1/2
√

2

2
|z − s| ,

we get

λ =

(
p

√
2
2
|z − s|

)2

=
p2

1
2
|z − s|2

, dλ =
2pdp

1
2
|z − s|2

.

Then,

∆ =

∞∫
0

|z − s|2α 1
2α

p2α
e−p

2pdp
1
2
|z − s|2

= |z − s|2α−2 22−α

∞∫
0

e−pp1−2αdp

= |z − s|2α−2 22−αΓ(2− 2α) = M0 |z − s|2α−2 .

From that, it follows

T1 ≤M1τ
−2α

x∫
0

x+τ∫
x

(z − s)2α−2 dzds

≤M2τ
−2α

x+τ∫
x

(z − s)2α−1

1− 2α
dz

= M2
τ−2ατ 2α

(1− 2α) 2α
=

M2

(1− 2α) 2α
. (2.47)

Second, let us estimate T2.

T2 = τ−2α
∞∫
0

λ−α
x+τ∫
x

|G(x+ τ, s, µ;λ+ δ)−G(x, s, µ;λ+ δ)| dsdλ

= τ−2α
∞∫
0

λ−α
x+τ∫
x

e−(δ2+|λ|2)
1/4√2

2
|z−s|(

δ2 + |λ|2
)1/4 +

e−(δ2+|λ|2)
1/4√2

2
|z+τ−s|(

δ2 + |λ|2
)1/4

 dsdλ
≤ M√

λ
τ−2α

∞∫
0

λ−α
x+τ∫
x

[
e−
√
λ
√
2

2
|z−s| + e−

√
λ
√
2

2
|z+τ−s|

]
dsdλ

=
M√
λ
τ−2α

∞∫
0

λ−α
x+τ∫
x

[
e−
√
λ
√
2
2
(s−x) + e−

√
λ
√
2

2
(z+τ−s)

]
dsdλ.
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= T21 + T22,

where

T21 =
M√
λ
τ−2α

∞∫
0

λ−α
x+τ∫
x

e−
√
λ
√
2

2
(s−x)dsdλ,

T22 =
M√
λ
τ−2α

∞∫
0

λ−α
x+τ∫
x

e−
√
λ
√
2

2
(z+τ−s)dsdλ.

By changing variable,
√
λ

√
2

2
(s− x) = p,

we have

λ =
2p2

(s− x)2
, dλ =

4pdp

(s− x)2
, λ−(α+ 1

2) = M
(s− x)2α+1

p2α+1
.

Then,

T21 =
M√
λ
τ−2α

x+τ∫
x

∞∫
0

λ−αe−
√
λ
√
2

2
(s−x)dλds ≤M1τ

−2α

x+τ∫
x

∞∫
0

(s− x)2α+1

p2α+1

e−ppdp

(s− x)2
ds

= M1τ
−2α

x+τ∫
x

(s− x)2α−1 ds

∞∫
0

e−pp−2α dp

≤M2
τ−2ατ 2α

2α
=
M2

2α
.

Similarly, by changing variable,

√
λ

√
2

2
(x+ τ − s) = p,

we get

T21 =
M√
λ
τ−2α

x+τ∫
x

∞∫
0

λ−αe−
√
λ
√
2

2
(x+τ−s)dλds

≤M1τ
−2α

x+τ∫
x

∞∫
0

(x+ τ − s)2α+1

p2α+1

e−ppdp

(x+ τ − s)2
ds

≤M1τ
−2α

x+τ∫
x

(x+ τ − s)2α−1 ds
∞∫
0

e−pp−2α dp

= M2
τ−2ατ 2α

2α
=
M2

2α
.

Thus,

T2 ≤
M2

2α
.
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Finally, let us estimate T3.

T3 = |τ |−2α
∞∫
0

λ−α
1∫

x+τ

x+τ∫
x

|Gz(z, , s, µ;λ+ δ)| dzdsdλ

≤ |τ |−2α
∞∫
0

λ−α
1∫

x+τ

x+τ∫
x

e−(δ2+|λ|2)
1/4√2

2
|z−s|dzdsdλ

≤ |τ |−2α
1∫

x+τ

x+τ∫
x

∞∫
0

λ−αe−|λ|
1/2
√
2
2
|z−s|dλdzds.

Using (2.46), we have

T3 ≤M1τ
−2α

1∫
x+τ

x+τ∫
x

(s− z)2α−2dzds

≤M1τ
−2α

x+τ∫
x

(x+ τ − z)2α−1

1− 2α
dz

≤M1
τ−2ατ 2α

(1− 2α) 2α
=

M1

(1− 2α) 2α
. (2.48)

Finally,

T ≤ M

1− 2α
+
M

2α
≤ M

2α (1− 2α)
.

Theorem 2.2.1 is proved.

From positivity of Ax in Eα,∞ and Theorem 2.2.1 it follows the positivity of

Ax on
◦
C

2α

[0, 1] .

Theorem 2.2.2. The operator (λ+ Ax) has a bounded inverse in
◦
C

2α

[0, 1] for any

λ ≥ 0 and the following estimate holds:

∥∥(λ+ Ax)−1
∥∥
◦
C

2α

[0,1]→
◦
C

2α

[0,1]
≤ M(δ)

2α(1− 2α)

M

δ + λ
.

2.3 APPLICATIONS

In applications, we will obtain new coercive inequalities for the solution of

local and nonlocal boundary value problems for parabolic and elliptic equations.
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2.3.1 Parabolic problems

First, we consider the initial boundary value problem



−∂u
∂t
− ∂2u

∂x2
+ δu(t, x) = f(t, x), 0 < t < T, x ∈ (0, 1) ,

u(0, x) = ϕ(x), x ∈ [0, 1],

u(t, 0) = 0, u(t, 1) = u(t, µ), 0 ≤ µ < 1, 0 ≤ t ≤ T.

(2.49)

Here, ϕ(x) and f(t, x) are sufficiently smooth functions and they satisfy compati-

bility conditions which guarantee problem (2.49) has a smooth solution u(t, x).

Theorem 2.3.1. Let 0 < 2α < 1. Then, for the solution of the initial value problem

(2.49), we have the following coercive stability inequality

‖ut‖
C

(
[0,T ],

◦
C

2α

[0,1]

) + ‖u‖
C

(
[0,T ],

◦
C

2α+2

[0,1]

)

≤M(α)

[
‖ϕ‖ ◦

C
2α+2

[0,1]
+ ‖f‖

C

(
[0,T ],

◦
C

2α

[0,1]

)
]
.

The proof of Theorem 2.3.1 is based on Theorem 2.2.1 on the structure of the

fractional spaces Eα = Eα,∞ (C [0, 1] , Ax) , on the Theorem 2.1.1 on the positivity

of the operator Ax, on the following theorem on coercive stability of initial value for

the abstract parabolic equation.

Theorem 2.3.2. (Ashyralyev and Sobolevskii, 2004) Let A be a strongly positive

operator in a Banach space E and ϕ ∈ D (A) , f ∈ C ([0, T ] , Eα) , 0 < α < 1. Then,

the solution of the initial value problem

u′ + Au(t) = f(t), 0 < t < T, u(0) = ϕ (2.50)

in a Banach space E, satisfies the following coercive inequality

‖u′‖C([0,T ],Eα)
+ ‖Au‖C([0,T ],Eα)

≤M

[
‖Aϕ‖Eα +

M

α(1− α)
‖f‖C([0,T ],Eα)

]
.
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Second, we consider the nonlocal boundary value problem for the parabolic

equation

∂u(t,x)
∂t
− ∂2u(t,x)

∂x2
+ δu(t, x) = f(t, x), 0 < t < T, x ∈ (0, 1) ,

u(0, x) = u(T, x), x ∈ [0, 1],

u(t, 0) = 0, u(t, 1) = u(t, µ), 0 ≤ µ < 1, 0 ≤ t ≤ T.

(2.51)

Here, f(t, x) is a sufficiently smooth function and it satisfies any compatibility

conditions which guarantee problem (2.51) has a smooth solution u(t, x).

Theorem 2.3.3. Let 0 < 2α < 1. Then, for the solution of boundary value problem

(2.51), the following coercive stability inequality holds:

‖ut‖
C

(
[0,T ],

◦
C

2α

[0,1]

) + ‖u‖
C

(
[0,T ],

◦
C

2α+2

[0,1]

) ≤M(α) ‖f‖
C

(
[0,T ],

◦
C

2α

[0,1]

) .

The proof of Theorem 2.3.3 is based on Theorem 2.2.1 on the structure of the

fractional spaces Eα = Eα,∞ (C [0, 1] , Ax) ,

Theorem 2.1.1 on the positivity of the operator Ax on the following theorem

on the coercive stability of the nonlocal boundary value for the abstract parabolic

equation.

Theorem 2.3.4. (Ashyralyev and Sobolevskii, 2004) Let A be a strongly positive

operator in a Banach space E and f ∈ C ([0, T ] , Eα) , 0 < α < 1. Then, for the

solution of the nonlocal boundary value problem

u′ + Au(t) = f(t), 0 < t < T, u(0) = u(T ) (2.52)

in a Banach space E, we have the following coercive inequality

‖u′‖C([0,T ],Eα)
+ ‖Au‖C([0,T ],Eα)

≤ M

α(1− α)
‖f‖C([0,T ],Eα)

.
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2.3.2 Elliptic problems

First, we consider the boundary value problem

−∂2u(t,x)
∂t2

− ∂2u(t,x)
∂x2

+ δu(t, x) = f(t, x), 0 < t < T, x ∈ (0, 1) ,

u(0, x) = ϕ(x), u(T, x) = ψ(x), x ∈ [0, 1],

u(t, 0) = 0, u(t, 1) = u(t, µ), 0 ≤ µ < 1, 0 ≤ t ≤ T.

(2.53)

Here, ϕ(x), ψ(x) and f(t, x) are sufficiently smooth functions and they satisfy any

compatibility conditions which guarantee problem (2.53) has a smooth solution

u(t, x).

Theorem 2.3.5. Let 0 < 2α < 1. Then, for the solution of the boundary value

problem (2.53), the following coercive stability inequality

‖utt‖
C

(
[0,T ],

◦
C

2α

[0,1]

) + ‖u‖
C

(
[0,T ],

◦
C

2+2α

[0,1]

)

≤M(α)

[
‖ϕ‖ ◦

C
2+2α

[0,1]
+ ‖ψ‖ ◦

C
2+2α

[0,1]
+ ‖f‖

C

(
[0,T ],

◦
C

2+2α

[0,1]

)
]

is valid.

The proof of Theorem 2.3.5 is based on Theorem 2.2.1 on the structure of

the fractional spaces Eα = Eα,∞ (C [0, 1] , Ax) , Theorem 2.1.1 on the positivity of

the operator Ax, on the following theorems on coercive stability of boundary value

problem for the abstract elliptic equation and on the structure of the fractional space

E ′α = Eα(E,A1/2) which is the Banach space consisting of those v ∈ E for which

the norm

‖v‖E′α = sup
λ>0

λα
∥∥∥A1/2

(
λ+ A1/2

)−1
v
∥∥∥
E

+ ‖v‖E

is finite.

Theorem 2.3.6. (Ashyralyev and Sobolevskii, 2004) The spaces Eα(E,A) and

E ′2α(E,A1/2) coincide for any 0 < α < 1
2
, and their norms are equivalent.
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Theorem 2.3.7. (Ashyralyev and Sobolevskii, 2004) Let A be positive operator in

a Banach space E and ϕ ∈ D (A) , ψ ∈ D (A) , f ∈ C([0, T ], E ′α), 0 < α < 1. Then,

for the solution of the boundary value problem

−u′′ + Au(t) = f(t), 0 < t < T, u(0) = ϕ, u(T ) = ψ (2.54)

in a Banach space E the following coercive inequality holds:

‖u′′‖C([0,T ],E′α)
+ ‖Au‖C([0,T ],E′α)

≤M

[
‖Aϕ‖E′α + ‖Aψ‖E′α +

M

α(1− α)
‖f‖C([0,T ],E′α)

]
.

Second, we consider the nonlocal boundary value problem for the elliptic equa-

tion 

−∂2u(t,x)
∂t2

− ∂2u(t,x)
∂x2

+ δu(t, x) = f(t, x), 0 < t < T, x ∈ (0, 1) ,

u(0, x) = u(T, x), ut(0, x) = ut(T, x), x ∈ [0, 1] ,

u(t, 0) = 0, u(t, 1) = u(t, µ), 0 ≤ µ < 1, 0 ≤ t ≤ T.

(2.55)

Here, f(t, x) is sufficiently smooth function and it satisfies any compatibility condi-

tions which guarantee problem (2.55) has a smooth solution u(t, x).

Theorem 2.3.8. Let 0 < 2α < 1. Then, for the solution of nonlocal boundary value

problem (2.55), the following coercive stability inequality holds:

‖utt‖
C

(
[0,T ],

◦
C

2α

[0,1]

) + ‖u‖
C

(
[0,T ],

◦
C

2+2α

[0,1]

) ≤M(α) ‖f‖
C

(
[0,T ],

◦
C

2α

[0,1]

) .
The proof of Theorem 2.3.8 is based on Theorem 2.2.1 on the structure of the

fractional spaces Eα = Eα,∞ (C [0, 1] , Ax) , Theorem 2.1.1 on the positivity of the op-

erator Ax, Theorem 2.3.6 on the structure of the fractional space E ′α = Eα(E,A1/2)

and on the following theorem on coercive stability of the nonlocal boundary value

problem for the abstract elliptic equation.

Theorem 2.3.9. (Ashyralyev, 2003) Let A be a positive operator in a Banach space

E and f ∈ C([0, T ], E ′α), 0 < α < 1. Then, for the solution of the nonlocal boundary

value problem 
−u′′ + Au(t) = f(t), 0 < t < T,

u(0) = u(T ), u′(0) = u′(T )

(2.56)
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in a Banach space E, the coercive inequality

‖u′′‖C([0,T ],E′α)
+ ‖Au‖C([0,T ],E′α)

≤ M

α(1− α)
‖f‖C([0,T ],E′α)

is valid.



CHAPTER 3

POSITIVITY OF AX AND STRUCTURE OF

FRACTIONAL SPACES Eα,1(L1[0, 1], AX)

In Chapter 3, the positivity of the differential operator Ax in L1 [0, 1] is estab-

lished. The structure of fractional spaces Eα,1(L1[0, 1], Ax) will be investigated. It

is established that for any 0 < α < 1/2 the norms in the spaces Eα,1(L1[0, 1], Ax)

and W 2α
1 [0, 1] are equivalent. This result allows us to prove the positivity of Ax

in W 2α
1 [0, 1] (0 < α < 1/2). In applications, we will obtain new coercive inequali-

ties for the solution of local and nonlocal boundary value problems for elliptic and

parabolic equations.

3.1 POSITIVITY OF AX IN L1 [0, 1]

First, the positivity of Ax in L1 [0, 1] is investigated.

Theorem 3.1.1. For all λ ∈ Rϕ = {λ : |arg λ| ≤ ϕ, ϕ < π/2}, the resolvent

(λI + Ax)−1 defined by formula (2.4) is subject to the bound

∥∥(λI + Ax)−1
∥∥
L1[0,1]→L1[0,1]

≤ M(ϕ, δ)

1 + |λ|
.

Proof. Using formula (2.4) and the triangle inequality, we get

|u(x)| ≤
1∫

0

|G(x, s, µ;λ+ δ)| |f(s)| ds (3.1)

35
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for any x ∈ [0, 1] . We denote that

f∗(s) =


f(s), s ∈ [0, 1] ,

0, s /∈ [0, 1] .

(3.2)

Then, using inequality (3.1), estimates (2.7), (2.8) and the triangle inequality, we

have
1∫

0

|u(x)| dx ≤
1∫

0

1∫
0

|G(x, s, µ;λ+ δ)| |f∗(s)| dsdx

=

1∫
1+µ
2

µ∫
0

|G(x, s, µ;λ+ δ)| |f∗(s)| dsdx+

1∫
1+µ
2

1∫
µ

|G(x, s, µ;λ+ δ)| |f∗(s)| dsdx

+

1+µ
2∫

0

1∫
0

|G(x, s, µ;λ+ δ)| |f∗(s)| dsdx

≤ M1(δ, µ)(
δ2 + |λ|2

)1/4
1∫

1+µ
2

µ∫
0

e−(δ2+|λ|2)
1/4√2

2
(1−x+µ−s) |f∗(s)| dsdx

+
M1(δ, µ)(
δ2 + |λ|2

)1/4
1∫

1+µ
2

x+µ−1
2∫

µ

e−(δ2+|λ|2)
1/4√2

2
(1−x+s−µ) |f∗(s)| dsdx

+
M1(δ, µ)(
δ2 + |λ|2

)1/4
1∫

1+µ
2

1∫
x+µ−1

2

e−(δ2+|λ|2)
1/4√2

2
|x−s| |f∗(s)| dsdx

+
M1(δ, µ)(
δ2 + |λ|2

)1/4
1+µ
2∫

0

1∫
0

e−(δ2+|λ|2)
1/4√2

2
|x−s| |f∗(s)| dsdx

≤ M1(δ, µ)(
δ2 + |λ|2

)1/4
1∫

1+µ
2

1+µ∫
0

e−(δ2+|λ|2)
1/4√2

2
(1−y+µ) |f∗(y − x)| dydx

+
M1(δ, µ)(
δ2 + |λ|2

)1/4
1∫

1+µ
2

µ−1
2∫

µ−1

e−(δ2+|λ|2)
1/4√2

2
(1+y−µ) |f∗(y + x)| dydx

+
M1(δ, µ)(
δ2 + |λ|2

)1/4
1∫

1+µ
2

1∫
µ−1
2

e−(δ2+|λ|2)
1/4√2

2
|y| |f∗(y + x)| dydx
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+
M1(δ, µ)(
δ2 + |λ|2

)1/4
1+µ
2∫

0

1∫
−1

e−(δ2+|λ|2)
1/4√2

2
|y| |f∗(y + x)| dydx

≤ M1(δ, µ)(
δ2 + |λ|2

)1/4
1+µ∫
0

e−(δ2+|λ|2)
1/4√2

2
(1−y+µ)dy

1∫
1+µ
2

|f∗(y − x)| dx

+
M1(δ, µ)(
δ2 + |λ|2

)1/4
µ−1
2∫

µ−1

e−(δ2+|λ|2)
1/4√2

2
(1+y−µ)dy

1∫
1+µ
2

|f∗(y + x)| dx

+
M1(δ, µ)(
δ2 + |λ|2

)1/4
1∫

1+µ
2

e−(δ2+|λ|2)
1/4√2

2
|y|dy

1∫
µ−1
2

|f∗(y + x)| dx

+
M1(δ, µ)(
δ2 + |λ|2

)1/4
1+µ
2∫

0

e−(δ2+|λ|2)
1/4√2

2
|y|dy

1∫
−1

|f∗(y + x)| dx

≤ M1(δ, µ)(
δ2 + |λ|2

)1/4
1+µ∫
0

e−(δ2+|λ|2)
1/4√2

2
(1−y+µ)dy

1∫
0

|f∗(s)| ds

+
M1(δ, µ)(
δ2 + |λ|2

)1/4
µ−1
2∫

µ−1

e−(δ2+|λ|2)
1/4√2

2
(1+y−µ)dy

1∫
0

|f∗(s)| ds

+
M1(δ, µ)(
δ2 + |λ|2

)1/4
1∫

1+µ
2

e−(δ2+|λ|2)
1/4√2

2
|y|dy

1∫
0

|f∗(s)| ds

+
M1(δ, µ)(
δ2 + |λ|2

)1/4
1+µ
2∫

0

e−(δ2+|λ|2)
1/4√2

2
|y|dy

1∫
−1

|f∗(s)| ds

≤ M(ϕ, δ)

1 + |λ|
‖f‖L1[0,1]

.

Thus, we obtain

∥∥(Ax + λ)−1f
∥∥
L1[0,1]

≤ M(ϕ, δ)

1 + |λ|
‖f‖L1[0,1]

.

From that it follows

∥∥(Ax + λ)−1
∥∥
L1[0,1]→L1[0,1]

≤ M(ϕ, δ)

1 + |λ|
.

So, Theorem 3.1.1 is proved.
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Clearly, the operators Ax and its resolvent (λ + Ax)−1 commute. Thus, from

the definition of the norm in the space Eα,1(L1 [0, 1] , Ax) it follows that

∥∥(λ+ Ax)−1
∥∥
Eα,1(L1[0,1],Ax)→Eα,1(L1[0,1],Ax)

≤
∥∥(λ+ Ax)−1

∥∥
L1[0,1]→L1[0,1]

.

Hence, by using Theorem 3.1.1, we obtain the positivity of the operator Ax in the

fractional spaces Eα,1(L1 [0, 1] , Ax).

3.2 THE STRUCTURE OF FRACTIONAL SPACES Eα,1(L1 [0, 1] , AX),

POSITIVITY OF AX -IN-
◦
W1

2α

[0, 1]

Now, we will study the positivity of Ax in
◦
W1

2α

[0, 1]. We have the following

theorem.

Theorem 3.2.1. Let α ∈ (0, 1/2). Then, the norms of the spaces Eα,1(L1 [0, 1] , Ax)

and
◦
W1

2α

[0, 1] are equivalent.

Here,
◦
W1

2α

[0, 1] (0 < 2α < 1) is the Banach space of all integrable functions

ϕ(x) defined on [0, 1] and satisfying a Hölder condition for which the following norm

is finite

‖ϕ‖ ◦
W1

2α

[0,1]
=

1∫
0

1∫
0

|ϕ (x+ y)− ϕ (x)|
y1+2α

dydx+

1∫
0

|ϕ (x)− ϕ (0)|
x2α

dx+ ‖ϕ‖L1[0,1]
.

Proof. For any λ > 0 using formula (2.38), the triangle inequality, we get

∞∫
0

1∫
0

λα
∣∣Ax(λ+ Ax)−1f(x)

∣∣ dxdλ
λ
≤

∞∫
0

δλα

δ + λ

dλ

λ

1∫
0

|f(x)| dx

+

∞∫
0

λα+1

δ + λ

1∫
0

[
e−
√
δ+λx + e−

√
δ+λµ(e−

√
δ+λ(1−x) − e−

√
δ+λ(1+x))

× (1 + e−
√
δ+λ(1+µ))−1

]
|f(x)| dxdλ

λ

+

1∫
0

∞∫
0

λα+1

1∫
0

|G(x, s, µ;λ+ δ)| |f(x)− f(s| dsdxdλ
λ

= P1 + P2 + P3,
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where

P1 =

∞∫
0

δλα

δ + λ

dλ

λ

1∫
0

|f(x)| dx,

P2 =

∞∫
0

λα+1

δ + λ

1∫
0

[
e−
√
δ+λx + e−

√
δ+λµ(e−

√
δ+λ(1−x) − e−

√
δ+λ(1+x))

× (1 + e−
√
δ+λ(1+µ))−1

]
|f(x)| dxdλ

λ
,

P3 =

∞∫
0

λα+1

1∫
0

1∫
0

|G(x, s, µ;λ+ δ)| |f(x)− f(s| dsdxdλ
λ
.

Using the definition of norm space
◦
W1

2α

[0, 1], we have

P1 ≤
∞∫
0

δλα

δ + λ

dλ

λ
‖f‖L1[0,1]

≤

 1∫
0

dλ

λ1−α
+ δ

∞∫
1

dλ

λ2−α

 ‖f‖ ◦
W1

2α

[0,1]

≤ M(δ)

α(1− α)
‖f‖ ◦

W1

2α

[0,1]
. (3.3)

Now, we will estimate P2. We obtain that

P2 ≤
∞∫
0

λα

δ + λ

1∫
0

e−
√
δ+λx |f(x)− f(0)| dxdλ

+

∞∫
0

λα+1

δ + λ

1∫
0

[
e−
√
δ+λµ(e−

√
δ+λ(1−x) − e−

√
δ+λ(1+x))

× (1 + e−
√
δ+λ(1+µ))−1

]
|f(x)| dxdλ

λ
= P21 + P22,

where

P21 =

∞∫
0

λα

δ + λ

1∫
0

e−
√
δ+λx |f(x)− f(0)| dxdλ,

P22 =

∞∫
0

λα+1

δ + λ

1∫
0

[
e−
√
δ+λµ(e−

√
δ+λ(1−x) − e−

√
δ+λ(1+x))(1 + e−

√
δ+λ(1+µ))−1

]
|f(x)| dxdλ

λ
.

First, we will estimate P21. We have that

P21 =

1∫
0

|f(x)− f(0)|
∞∫
0

λα

δ + λ
e−
√
δ+λxdλdx.
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Since
∞∫
0

λα

δ + λ
e−
√
δ+λxdλ ≤

∞∫
0

(δ + λ)α−1 e−
√
δ+λxdλ

=

∞∫
√
δx

yα−1e−ydyx2−2α−2 ≤
∞∫
0

yα−1e−ydyx−2α = G(α)x−2α,

we get

P21 ≤ G(α)

1∫
0

x−2α |f(x)− f(0)| dx ≤ G(α) ‖f‖ ◦
W1

2α

[0,1]
. (3.4)

Second, we estimate P22. Clearly, we have

P22 = M(δ)

1∫
0

|f(x)|
∞∫
0

(λ+ δ)α−1 e−
√
δ+λ(1+µ−x)dλdx.

In same manner, we obtain

∞∫
0

λα

δ + λ
e−
√
δ+λ(1+µ−x)dλ ≤

∞∫
0

(δ + λ)α−1 e−
√
δ+λ(1+µ−x)dλ

=

∞∫
√
δ(1+µ−x)

yα−1e−ydy(1 + µ− x)2−2α−2

≤
∞∫
0

yα−1e−ydy(1 + µ− x)−2α = G(α)(1 + µ− x)−2α.

Thus, we get

P22 ≤M(δ)G(α)

1∫
0

(1 + µ− x)−2α |f(x)| dx

≤M(δ)G(α)

1∫
0

µ−2α |f(x)| dx ≤M(δ, µ)G(α) ‖f‖ ◦
W1

2α

[0,1]
. (3.5)

Combining estimates (3.4) and (3.5), we have

P2 ≤ (M(δ, µ) + 1)G(α) ‖f‖ ◦
W1

2α

[0,1]
. (3.6)

Now, we will estimate P3.

P3 =

∞∫
0

λα+1

1∫
0

1∫
0

|G(x, s, µ;λ+ δ)| |f(x)− f(s)| dsdxdλ
λ
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≤

1+µ
2∫

0

1∫
0

∞∫
0

λα+1 M1(δ, µ)(
δ2 + |λ|2

)1/4 e−(δ2+|λ|2)
1/4√2

2
|x−s|dλ

λ
|f(x)− f(s)| dsdx

+

1∫
1+µ
2

µ∫
0

∞∫
0

λα+1 M1(δ, µ)(
δ2 + |λ|2

)1/4 e−(δ2+|λ|2)
1/4√2

2
(1−x+µ−s)dλ

λ
|f(x)− f(s)| dsdx

+

1∫
1+µ
2

x+µ−1
2∫

µ

∞∫
0

λα+1 M1(δ, µ)(
δ2 + |λ|2

)1/4 e−(δ2+|λ|2)
1/4√2

2
(1−x+s−µ)dλ

λ
|f(x)− f(s)| dsdx

+

1∫
1+µ
2

1∫
x+µ−1

2

∞∫
0

λα+1 M1(δ, µ)(
δ2 + |λ|2

)1/4 e−(δ2+|λ|2)
1/4√2

2
|x−s|dλ

λ
|f(x)− f(s)| dsdx.

We have that
∞∫
0

λα+1 1(
δ2 + |λ|2

)1/4 e−(δ2+|λ|2)
1/4√2

2
|x−s|dλ

λ

≤
∞∫
0

1

λ
1
2
−α
e−λ

1
2
√
2

2
|x−s|dλ.

Putting λ
1
2

√
2
2
|x− s| = y, we get λ = 2y2

|x−s|2 and dλ = 4ydy

|x−s|2 . Then,

∞∫
0

1

λ
1
2
−α
e−λ

1
2
√
2

2
|x−s|dλ =

∞∫
0

(
2y2

|x− s|2

)α− 1
2

e−y
4ydy

|x− s|2

= 2α+
3
2

1

|x− s|2α+1

∞∫
0

e−yy2αdy = G(2α + 1)
2α+

3
2

|x− s|2α+1

and

∞∫
0

λα+1 1(
δ2 + |λ|2

)1/4 e−(δ2+|λ|2)
1/4√2

2
|x−s|dλ

λ
≤ G(2α + 1)

2α+
3
2

|x− s|2α+1 .

Similarly, we can show that

∞∫
0

λα+1 1(
δ2 + |λ|2

)1/4 e−(δ2+|λ|2)
1/4√2

2
(1−x+s−µ)dλ

λ
≤ G(2α + 1)

2α+
3
2

(1− x+ s− µ)2α+1

and

∞∫
0

λα+1 1(
δ2 + |λ|2

)1/4 e−(δ2+|λ|2)
1/4√2

2
(1−x+µ−s)dλ

λ
≤ G(2α + 1)

2α+
3
2

(1− x+ µ− s)2α+1 .
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Therefore,

P3 ≤ G(2α + 1)M2(δ, µ)

1+µ
2∫

0

1∫
0

|f(x)− f(s)|
|x− s|2α+1 dsdx

+G(2α + 1)M2(δ, µ)

1∫
1+µ
2

µ∫
0

|f(x)− f(s)|
(1− x+ µ− s)2α+1dsdx

+G(2α + 1)M2(δ, µ)

1∫
1+µ
2

x+µ−1
2∫

µ

|f(x)− f(s)|
(1− x+ s− µ)2α+1dsdx

+G(2α + 1)M2(δ, µ)

1∫
1+µ
2

1∫
x+µ−1

2

|f(x)− f(s|
|x− s|2α+1 dsdx

= G(2α + 1)M2(δ, µ)


1+µ
2∫

0

1∫
0

|f(x)− f(s)|
|x− s|2α+1 dsdx

+

1∫
1+µ
2

µ∫
0

|f(x)− f(s)|
(1− x+ µ− s)2α+1dsdx+

1∫
1+µ
2

x+µ−1
2∫

µ

|f(x)− f(s)|
(1− x+ s− µ)2α+1dsdx

+

1∫
1+µ
2

1∫
x+µ−1

2

|f(x)− f(s|
|x− s|2α+1 dsdx


≤ G(2α + 1)M3(δ, µ) ‖f‖ ◦

W1

2α

[0,1]
.

Thus,

‖f‖Eα,1(L1[0,1],Ax)
≤M4(a, µ, δ) ‖f‖ ◦

W1

2α

[0,1]
. (3.7)

Now, let us prove the reverse inequality

‖f‖ ◦
W1

2α

[0,1]
≤M4(a, µ, δ) ‖f‖Eα,1(L1[0,1],Ax)

. (3.8)

Applying formula (2.44), we get

f(x+ τ)− f(x)

=

∞∫
0

λ−α
1∫

0

[G(x+ τ, s, µ;λ+ δ)−G(x, s, µ;λ+ δ)]λαAs(λ+ As)−1f(s)dsdλ.

The proof estimate (3.8) is based on this formula and estimates (2.7), (2.8) and the

triangle inequality. This finishes the proof of Theorem 3.2.1.
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From positivity of Ax in Eα,1 and Theorem 3.2.1 it follows the positivity of Ax

on
◦
W1

2α

[0, 1].

Theorem 3.2.2. The operator (λ+ Ax) has a bounded inverse in
◦
W1

2α

[0, 1] for any

λ ≥ 0 and the following estimate holds:

∥∥(λ+ Ax)−1
∥∥
◦
W1

2α

[0,1]→
◦
W1

2α

[0,1]
≤ M(δ)

2α(1− 2α)

M

δ + λ
.

3.3 APPLICATIONS

In applications, we will obtain new coercive inequalities for the solution of

local and nonlocal boundary value problems for parabolic and elliptic equations.

3.3.1 Parabolic problems

First, we consider the initial boundary value problem (2.49).

Theorem 3.3.1. Let 0 < 2α < 1. Then, for the solution of the initial value problem

(2.49), we have the following coercive stability inequality

‖ut‖
L1

(
[0,T ],

◦
W1

2α

[0,1]

) + ‖u‖
L1

(
[0,T ],

◦
W1

2+2α

[0,1]

)

≤M(α)

[
‖ϕ‖ ◦

W1

2+2α

[0,1]
+ ‖f‖

L1

(
[0,T ],

◦
W1

2α

[0,1]

)
]
.

The proof of Theorem 3.3.1 is based on Theorem 3.2.1 on the structure of the

fractional spaces Eα,1 = Eα,1 (L1 [0, 1] , Ax) , Theorem 3.1.1 on the positivity of the

operator Ax on the following theorem on coercive stability of initial value for the

abstract parabolic equation.

Theorem 3.3.2. Let A be a strongly positive operator in a Banach space E and

ϕ ∈ D (A) , f ∈ L1 ([0, T ] , Eα,1) , 0 < α < 1. Then, for the solution of the initial

value problem (2.50), the following coercive inequality

‖u′‖L1([0,T ],Eα,1)
+ ‖Au‖L1([0,T ],Eα,1)
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≤M

[
‖Aϕ‖Eα,1 +

M

α(1− α)
‖f‖L1([0,T ],Eα,1)

]
is valid.

Second, we consider the nonlocal boundary value problem for parabolic equa-

tion (2.51).

Theorem 3.3.3. Let 0 < 2α < 1. Then, for the solution of boundary value problem

(2.51), the following coercive stability inequality holds:

‖ut‖
L1

(
[0,T ],

◦
W1

2α

[0,1]

) + ‖u‖
L1

(
[0,T ],

◦
W1

2+2α

[0,1]

) ≤M(α) ‖f‖
L1

(
[0,T ],

◦
W1

2α

[0,1]

) .

The proof of Theorem 3.3.3 is based on Theorem 3.2.1 on the structure of the

fractional spaces Eα,1 = Eα,1 (L1 [0, 1] , Ax) ,

Theorem 3.1.1 on the positivity of the operator Ax on the following theorem

on the coercive stability of the nonlocal boundary value for the abstract parabolic

equation.

Theorem 3.3.4. Let A be a strongly positive operator in a Banach space E and

f ∈ L1 ([0, T ] , Eα,1) , 0 < α < 1. Then, for the solution of the nonlocal boundary

value problem( 2.52), we have the following coercive inequality

‖u′‖L1([0,T ],Eα,1)
+ ‖Au‖L1([0,T ],Eα,1)

≤ M

α(1− α)
‖f‖L1([0,T ],Eα,1)

.

3.3.2 Elliptic problems

First, we consider the boundary value problem (2.53).

Theorem 3.3.5. Let 0 < 2α < 1. Then, the solution of the boundary value problem

(2.53) satisfies the following coercive stability inequality

‖utt‖
L1

(
[0,T ],

◦
W1

2α

[0,1]

) + ‖u‖
L1

(
[0,T ],

◦
W1

2+2α

[0,1]

)

≤M(α)

[
‖ϕ‖ ◦

W1

2+2α

[0,1]
+ ‖ψ‖ ◦

W1

2+2α

[0,1]
+ ‖f‖

L1

(
[0,T ],

◦
W1

2α

[0,1]

)
]
.

The proof of Theorem 3.3.5 is based on Theorem 3.2.1 on the structure of

fractional spaces Eα,1 = Eα,1 (L1 [0, 1] , Ax) , Theorem 3.1.1 on the positivity of the
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operator Ax, on the following theorems on coercive stability of boundary value prob-

lem for the abstract elliptic equation and on the structure of the fractional space

E ′α,1 = Eα,1(E,A
1/2) which is the Banach space consisting of those v ∈ E for which

the norm

‖v‖E′α,1 =

∞∫
0

λα
∥∥∥A1/2

(
λ+ A1/2

)−1
v
∥∥∥
E

dλ

λ

is finite.

Theorem 3.3.6. (Ashyralyev and Sobolevskii, 2004) The spaces Eα,1(E,A) and

E ′2α,1(E,A
1/2) coincide for any 0 < α < 1

2
, and their norms are equivalent.

Theorem 3.3.7. (Ashyralyev and Sobolevskii, 2004) Let A be positive operator in

a Banach space E and ϕ ∈ D (A) , ψ ∈ D (A) , f ∈ L1([0, T ], E ′α,1), 0 < α < 1.

Then, for the solution of the boundary value problem (2.54), the following coercive

inequality holds

‖u′′‖L1([0,T ],E′α,1)
+‖Au‖L1([0,T ],E′α,1)

≤M

[
‖Aϕ‖E′α,1 + ‖Aψ‖E′α,1 +

M

α(1− α)
‖f‖L1([0,T ],E′α,1)

]
.

Second, we consider the nonlocal boundary value problem for the elliptic equa-

tion (2.55).

Theorem 3.3.8. Let 0 < 2α < 1. Then, for the solution of nonlocal boundary value

problem (2.55), we have the following coercive stability inequality

‖utt‖
L1

(
[0,T ],

◦
W1

2α

[0,1]

) + ‖u‖
L1

(
[0,T ],

◦
W1

2+2α

[0,1]

) ≤M(α) ‖f‖
L1

(
[0,T ],

◦
W1

2α

[0,1]

) .
The proof of Theorem 3.3.8 is based on Theorem 3.2.1 on the structure of

the fractional spaces Eα,1 = Eα,1 (L1 [0, 1] , Ax) , Theorem 3.1.1 on the positivity

of the operator Ax, Theorem 3.3.6 on the structure of the fractional space E ′α,1 =

Eα,1(E,A
1/2) and on the following theorem on coercive stability of the nonlocal

boundary value problem for the abstract elliptic equation.

Theorem 3.3.9. (Ashyralyev, 2003) Let A be a positive operator in a Banach space

E and f ∈ L1([0, T ], E ′α,1), 0 < α < 1. Then, for the solution of the nonlocal

boundary value problem (2.56), the coercive inequality

‖u′′‖L1([0,T ],E′α,1)
+ ‖Au‖L1([0,T ],E′α,1)

≤ M

α(1− α)
‖f‖L1([0,T ],E′α,1)

is valid.



CHAPTER 4

POSITIVITY OF AX AND STRUCTURE OF

FRACTIONAL SPACES Eα,P (LP [0, 1], AX)

In Chapter 4, the positivity of the differential operatorAx in Lp [0, 1] is established.

The structure of fractional spaces Eα,p(Lp[0, 1], Ax) will be investigated. It is estab-

lished that for any 0 < α < 1/2 the norms in the spaces Eα,p(Lp[0, 1], Ax) and

W 2α
p [0, 1] are equivalent. This result permits us to prove the positivity of Ax in

W 2α
p [0, 1] (0 < α < 1/2). In applications, we will obtain new coercive inequali-

ties for the solution of local and nonlocal boundary value problems for elliptic and

parabolic equations.

4.1 POSITIVITY OF AX IN LP [0, 1]

First, the positivity of Ax in Lp [0, 1] is investigated.

Theorem 4.1.1. For all λ ∈ Rϕ = {λ : |arg λ| ≤ ϕ, ϕ < π/2}, the resolvent

(λI + Ax)−1 defined by formula (2.4) satisfies the following estimate

∥∥(λI + Ax)−1
∥∥
Lp[0,1]→Lp[0,1]

≤ M(ϕ, δ)

1 + |λ|
.

Proof. Using formulas (3.1) and (3.2), we get

|u(x)| ≤
1∫

0

|G(x, s, µ;λ+ δ)| |f∗(s)| ds

46
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for any x ∈ [0, 1] .Then, using estimates (2.7), (2.8) and the triangle inequality, we

obtain  1∫
0

|u(x)|p dx


1
p

≤

 1∫
0

 1∫
0

|G(x, s, µ;λ+ δ)| |f∗(s)| ds

p

dx


1
p

=

 1∫
1+µ
2

 µ∫
0

|G(x, s, µ;λ+ δ)| |f∗(s)| ds

p

dx


1
p

+

 1∫
1+µ
2

 1∫
µ

|G(x, s, µ;λ+ δ)| |f∗(s)| ds

p

dx


1
p

+


1+µ
2∫

0

 1∫
0

|G(x, s, µ;λ+ δ)| |f∗(s)| ds

p

dx


1
p

≤ M1(δ, µ)(
δ2 + |λ|2

)1/4
 1∫

1+µ
2

 µ∫
0

e−(δ2+|λ|2)
1/4√2

2
(1−x+µ−s) |f∗(s)| ds

p

dx


1
p

+
M1(δ, µ)(
δ2 + |λ|2

)1/4
 1∫

1+µ
2

 x+µ−1
2∫

µ

e−(δ2+|λ|2)
1/4√2

2
(1−x+s−µ) |f∗(s)| ds


p

dx


1
p

+
M1(δ, µ)(
δ2 + |λ|2

)1/4
 1∫

1+µ
2

 1∫
x+µ−1

2

e−(δ2+|λ|2)
1/4√2

2
|x−s| |f∗(s)| ds


p

dx


1
p

+
M1(δ, µ)(
δ2 + |λ|2

)1/4


1+µ
2∫

0

 1∫
0

e−(δ2+|λ|2)
1/4√2

2
|x−s| |f∗(s)| ds

p

dx


1
p

≤ M1(δ, µ)(
δ2 + |λ|2

)1/4
 1∫

1+µ
2

 1+µ∫
0

e−(δ2+|λ|2)
1/4√2

2
(1−y+µ) |f∗(y − x)| dy

p

dx


1
p

+
M1(δ, µ)(
δ2 + |λ|2

)1/4
 1∫

1+µ
2


µ−1
2∫

µ−1

e−(δ2+|λ|2)
1/4√2

2
(1+y−µ) |f∗(y + x)| dy


p

dx


1
p
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+
M1(δ, µ)(
δ2 + |λ|2

)1/4
 1∫

1+µ
2

 1∫
µ−1
2

e−(δ2+|λ|2)
1/4√2

2
|y| |f∗(y + x)| dy


p

dx


1
p

+
M1(δ, µ)(
δ2 + |λ|2

)1/4


1+µ
2∫

0

 1∫
−1

e−(δ2+|λ|2)
1/4√2

2
|y| |f∗(y + x)| dy

p

dx


1
p

≤ M1(δ, µ)(
δ2 + |λ|2

)1/4
1+µ∫
0

e−(δ2+|λ|2)
1/4√2

2
(1−y+µ)dy

1∫
1+µ
2

|f∗(y − x)| dx

+
M1(δ, µ)(
δ2 + |λ|2

)1/4
µ−1
2∫

µ−1

e−(δ2+|λ|2)
1/4√2

2
(1+y−µ)dy

 1∫
1+µ
2

|f∗(y + x)|p dx


1
p

+
M1(δ, µ)(
δ2 + |λ|2

)1/4
1∫

1+µ
2

e−(δ2+|λ|2)
1/4√2

2
|y|dy

 1∫
µ−1
2

|f∗(y + x)|p dx


1
p

+
M1(δ, µ)(
δ2 + |λ|2

)1/4
1+µ
2∫

0

e−(δ2+|λ|2)
1/4√2

2
|y|dy

 1∫
−1

|f∗(y + x)|p dx


1
p

≤ M1(δ, µ)(
δ2 + |λ|2

)1/4
1+µ∫
0

e−(δ2+|λ|2)
1/4√2

2
(1−y+µ)dy

 1∫
0

|f∗(s)|p ds


1
p

+
M1(δ, µ)(
δ2 + |λ|2

)1/4
µ−1
2∫

µ−1

e−(δ2+|λ|2)
1/4√2

2
(1+y−µ)dy

 1∫
0

|f∗(s)|p ds


1
p

+
M1(δ, µ)(
δ2 + |λ|2

)1/4
1∫

1+µ
2

e−(δ2+|λ|2)
1/4√2

2
|y|dy

 1∫
0

|f∗(s)|p ds


1
p

+
M1(δ, µ)(
δ2 + |λ|2

)1/4
1+µ
2∫

0

e−(δ2+|λ|2)
1/4√2

2
|y|dy

 1∫
0

|f∗(s)|p ds


1
p

≤ M(ϕ, δ)

1 + |λ|
‖f‖Lp[0,1] .

Thus, we have

∥∥(Ax + λ)−1f
∥∥
Lp[0,1]

≤ M(ϕ, δ)

1 + |λ|
‖f‖Lp[0,1] .
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From that it follows

∥∥(Ax + λ)−1
∥∥
Lp[0,1]→Lp[0,1]

≤ M(ϕ, δ)

1 + |λ|
.

Theorem 4.1.1 is proved.

Clearly, the operators Ax and its resolvent (λ + Ax)−1 commute. Thus, from

the definition of the norm in the space Eα,p(Lp [0, 1] , Ax) it follows that∥∥(λ+ Ax)−1
∥∥
Eα,p(Lp[0,1],Ax)→Eα,p(Lp[0,1],Ax)

≤
∥∥(λ+ Ax)−1

∥∥
Lp[0,1]→Lp[0,1]

.

Hence, by using Theorem 4.1.1, we obtain the positivity of the operator Ax in the

fractional spaces Eα,p(Lp [0, 1] , Ax).

4.2 THE STRUCTURE OF FRACTIONAL SPACES Eα,P (LP [0, 1] , AX),

POSITIVITY OF AX IN
◦
WP

2α

[0, 1]

Now, we will study the positivity of Ax in
◦
Wp

2α

[0, 1]. We have the following

theorem.

Theorem 4.2.1. Let α ∈ (0, 1/2), 1 ≤ p < ∞. Then, the norms of the spaces

Eα,p(Lp [0, 1] , Ax) and
◦
Wp

2α

[0, 1] are equivalent.

Here,
◦
Wp

2α

[0, 1] (0 < 2α < 1) is the Banach space of all integrable functions

ϕ(x) defined on [0, 1] and satisfying a Hölder condition for which the following norm

is finite:

‖ϕ‖ ◦
Wp

2α

[0,1]
=

 1∫
0

1∫
0

|ϕ (x+ y)− ϕ (x)|p

y1+2αp
dydx


1
p

+

1∫
0

|ϕ (x)− ϕ (0)|
x2(−1+p(α+1))

dx+‖ϕ‖Lp[0,1] .

Proof. For any λ > 0, using formula (2.38), the triangle inequality, we obtain

 ∞∫
0

 1∫
0

λα
∣∣Ax(λ+ Ax)−1f(x)

∣∣ dx
p

dλ

λ


1
p

≤

 ∞∫
0

 1∫
0

δλα

δ + λ
|f(x)| dx

p

dλ

λ


1
p
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+

 ∞∫
0

 λα+1

δ + λ

1∫
0

[
e−
√
δ+λx + e−

√
δ+λµ(e−

√
δ+λ(1−x) − e−

√
δ+λ(1+x))

×(1 + e−
√
δ+λ(1+µ))−1

]
|f(x)| dx

)p dλ
λ

) 1
p

+

 ∞∫
0

 1∫
0

λα+1

1∫
0

|G(x, s, µ;λ+ δ)| |f(x)− f(s| dsdx

p

dλ

λ


1
p

,

= Q1 +Q2 +Q3,

where

Q1 =

 ∞∫
0

(
δλα

δ + λ

)p
dλ

λ

 1
p 1∫

0

|f(x)| dx,

Q2 =

 ∞∫
0

 λα+1

δ + λ

1∫
0

[
e−
√
δ+λx + e−

√
δ+λµ(e−

√
δ+λ(1−x) − e−

√
δ+λ(1+x))

×(1 + e−
√
δ+λ(1+µ))−1

]
|f(x)| dx

)p dλ
λ

) 1
p

,

Q3 =

 ∞∫
0

 1∫
0

λα+1

1∫
0

|G(x, s, µ;λ+ δ)| |f(x)− f(s| dsdx

p

dλ

λ


1
p

.

Using the definition of norm space
◦
Wp

2α

[0, 1], we get

Q1 ≤

 ∞∫
0

(
δλα

δ + λ

)p
dλ

λ

 1
p

‖f‖L1[0,1]

≤M


 1∫

0

dλ

λ1−αp


1
p

+ δ

 ∞∫
1

dλ

λ1+(1−α)p

 1
p

 ‖f‖Lp[0,1]
≤M(δ, p, α) ‖f‖ ◦

Wp

2α

[0,1]
.

Now, we will estimate Q2. We have that

Q2 ≤

 ∞∫
0

 λα+1

δ + λ

1∫
0

e−
√
δ+λx |f(x)− f(0)| dx

p

dλ

λ


1
p
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+

 ∞∫
0

 λα+1

δ + λ

1∫
0

[
e−
√
δ+λµ(e−

√
δ+λ(1−x) − e−

√
δ+λ(1+x))

×(1 + e−
√
δ+λ(1+µ))−1

]
|f(x)| dx

)p dλ
λ

) 1
p

,

= Q21 +Q22,

where

Q21 =

 ∞∫
0

 λα+1

δ + λ

1∫
0

e−
√
δ+λx |f(x)− f(0)| dx

p

dλ

λ


1
p

,

Q22 =

 ∞∫
0

 λα+1

δ + λ

1∫
0

[
e−
√
δ+λµ(e−

√
δ+λ(1−x) − e−

√
δ+λ(1+x))

×(1 + e−
√
δ+λ(1+µ))−1

]
|f(x)| dx

)p dλ
λ

) 1
p

.

First, we will estimate Q21. We have that

Q21 ≤
1∫

0

|f(x)− f(0)|

 ∞∫
0

(
λα+1

δ + λ
e−
√
δ+λx

)p
dλ

δ + λ

 1
p

dx.

Since  ∞∫
0

(
λα+1

δ + λ
e−
√
δ+λx

)p
dλ

δ + λ

 1
p

≤

 ∞∫
0

(δ + λ)−1+(1+α)p e−p
√
δ+λxdλ

 1
p

= 2

∞∫
√
δx

y2(−1+p(α+1))e−ydyx−2(−1+p(α+1))

≤ 2

∞∫
0

y2(−1+p(α+1))e−pydyx−2(−1+p(α+1)) = M(p, α)x−2(−1+p(α+1)),

we have that

Q21 ≤M(p, α)

1∫
0

x−2(−1+p(α+1)) |f(x)− f(0)| dx ≤M(p, α) ‖f‖ ◦
Wp

2α

[0,1]
.

Second, we estimate Q22. We have that

Q22 ≤M(δ)

1∫
0

|f(x)|

 ∞∫
0

(
λα+1

δ + λ
e−
√
δ+λ(1+µ−x)

)p
dλ

δ + λ

 1
p

dx.
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In the same manner, we obtain ∞∫
0

(
λα+1

δ + λ
e−
√
δ+λ(1+µ−x)

)p
dλ

δ + λ

 1
p

≤

 ∞∫
0

(δ + λ)−1+(1+α)p e−p
√
δ+λ(1+µ−x)dλ

 1
p

= 2

∞∫
√
δ(1+µ−x)

y2(−1+p(α+1))e−ydy(1 + µ− x)−2(−1+p(α+1))

≤ 2

∞∫
0

y2(−1+p(α+1))e−pydy(1 + µ− x)−2(−1+p(α+1))

= M1(p, α)(1 + µ− x)−2(−1+p(α+1)).

Therefore,

Q22 ≤M1(p, α)

1∫
0

(1 + µ− x)−2(−1+p(α+1)) |f(x)| dx ≤M2(p, α) ‖f‖ ◦
Wp

2α

[0,1]
.

Then,

Q2 ≤M3(p, α) ‖f‖ ◦
Wp

2α

[0,1]
.

Now, we will estimate Q3.

Q3 =

 ∞∫
0

 1∫
0

λα+1

1∫
0

|G(x, s, µ;λ+ δ)| |f(x)− f(s| dsdx

p

dλ

λ


1
p

≤


1+µ
2∫

0

1∫
0

|f(x)− f(s)| dsdx
∞∫
0

(
λα+1 M1(δ, µ)(

δ2 + |λ|2
)1/4 e−(δ2+|λ|2)

1/4√2
2
|x−s|

)p
dλ

λ


1
p

+

 1∫
1+µ
2

µ∫
0

|f(x)− f(s)| dsdx
∞∫
0

(
λα+1 M1(δ, µ)(

δ2 + |λ|2
)1/4 e−(δ2+|λ|2)

1/4√2
2
(1−x+µ−s)

)p
dλ

λ


1
p

+

1∫
1+µ
2

x+µ−1
2∫

µ

|f(x)− f(s)| dsdx

 ∞∫
0

(
λα+1 M1(δ, µ)(

δ2 + |λ|2
)1/4 e−(δ2+|λ|2)

1/4√2
2
(1−x+s−µ)

)p
dλ

λ

 1
p
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+

1∫
1+µ
2

1∫
x+µ−1

2

|f(x)− f(s)| dsdx

 ∞∫
0

(
λα+1 M1(δ, µ)(

δ2 + |λ|2
)1/4 e−(δ2+|λ|2)

1/4√2
2
|x−s|

) 1
p
dλ

λ


1
p

.

We have that

∞∫
0

(
λα+1 1(

δ2 + |λ|2
)1/4 e−(δ2+|λ|2)

1/4√2
2
|x−s|

)p
dλ

λ

≤
∞∫
0

1

λ1−p(
1
2
+α)

e−λ
1
2
√

2
2
|x−s|dλ.

Putting λ
1
2

√
2
2
|x− s| = y, we get λ = 2y2

|x−s|2 and dλ = 4ydy

|x−s|2 . Then

∞∫
0

1

λ1−p(
1
2
+α)

e−pλ
1
2
√
2

2
|x−s|dλ =

∞∫
0

(
2y2

|x− s|2

)1−p( 1
2
+α)

e−py
4ydy

|x− s|2

= 4.2p(
1
2
+α) 1

|x− s|−2+2p( 1
2
+α)+2

∞∫
0

e−pyyp(
1
2
+α)−1dy = M(α, p)

1

|x− s|p(2α+1)

and
∞∫
0

1

λ1−p(
1
2
+α)

e−pλ
1
2
√
2

2
|x−s|dλ = M(α, p)

1

|x− s|p(2α+1)
.

Likewise, we can show that

∞∫
0

(
λα+1 1(

δ2 + |λ|2
)1/4 e−(δ2+|λ|2)

1/4√2
2
(1−x+s−µ)

)p
dλ

λ

≤M(α, p)
1

(1− x+ s− µ)p(2α+1)

and
∞∫
0

(
λα+1 1(

δ2 + |λ|2
)1/4 e−(δ2+|λ|2)

1/4√2
2
(1−x+µ−s)

)p
dλ

λ

≤M(α, p)
1

(1− x+ µ− s)p(2α+1)
.

Thus,

Q3 ≤M(α, p)

1+µ
2∫

0

1∫
0

|f(x)− f(s)|
|x− s|2α+1 dsdx

+M(α, p)

1∫
1+µ
2

µ∫
0

|f(x)− f(s)|
(1− x+ µ− s)2α+1dsdx
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+M(α, p)

1∫
1+µ
2

x+µ−1
2∫

µ

|f(x)− f(s)|
(1− x+ s− µ)2α+1dsdx

+M(α, p)

1∫
1+µ
2

1∫
x+µ−1

2

|f(x)− f(s|
|x− s|2α+1 dsdx

= M(α, p)


1+µ
2∫

0

1∫
0

|f(x)− f(s)|
|x− s|2α+1 dsdx

+

1∫
1+µ
2

µ∫
0

|f(x)− f(s)|
(1− x+ µ− s)2α+1dsdx+

1∫
1+µ
2

x+µ−1
2∫

µ

|f(x)− f(s)|
(1− x+ s− µ)2α+1dsdx

+

1∫
1+µ
2

1∫
x+µ−1

2

|f(x)− f(s|
|x− s|2α+1 dsdx


≤M3(α, p) ‖f‖ ◦

Wp

2α

[0,1]
.

Hence,

‖f‖Eα,p(Lp[0,1],Ax) ≤M4(a, µ, δ) ‖f‖ ◦
Wp

2α

[0,1]
.

Now, let us prove the reverse inequality

‖f‖ ◦
Wp

2α

[0,1]
≤M4(a, µ, δ) ‖f‖Eα,p(Lp[0,1],Ax) . (4.1)

Applying formula (2.44), we get

f(x+ τ)− f(x)

=

∞∫
0

λ−α
1∫

0

[G(x+ τ, s, µ;λ+ δ)−G(x, s, µ;λ+ δ)]λαAs(λ+ As)−1f(s)dsdλ.

The proof estimate (4.1) is based on this formula and estimates (2.7), (2.8), and the

triangle inequality. Theorem 4.2.1 is proved.

From positivity of Ax in Eα,p and Theorem 4.2.1 it follows the positivity of Ax

on
◦
Wp

2α

[0, 1].

Theorem 4.2.2. The operator (λ+ Ax) has a bounded inverse in
◦
Wp

2α

[0, 1] for any

λ ≥ 0 and the following estimate holds:∥∥(λ+ Ax)−1
∥∥
◦
Wp

2α

[0,1]→
◦
Wp

2α

[0,1]
≤ M(δ)

2α(1− 2α)

M

δ + λ
.
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4.3 APPLICATIONS

In applications, we will obtain new coercive inequalities for the solution of

local and nonlocal boundary value problems for parabolic and elliptic equations.

4.3.1 Parabolic problems

First, we consider the initial boundary value problem (2.49).

Theorem 4.3.1. Let 0 < 2α < 1. Then, for the solution of the initial value problem

(2.49), we have the following coercive stability inequality

‖ut‖
Lp

(
[0,T ],

◦
Wp

2α

[0,1]

) + ‖u‖
Lp

(
[0,T ],

◦
Wp

2+2α

[0,1]

)

≤M(α)

[
‖ϕ‖ ◦

Wp

2+2α

[0,1]
+ ‖f‖

Lp

(
[0,T ],

◦
Wp

2α

[0,1]

)
]
.

The proof of Theorem 4.3.1 is based on Theorem 4.2.1 on the structure of the

fractional spaces Eα,p = Eα,p (Lp [0, 1] , Ax) , Theorem 4.1.1 on the positivity of the

operator Ax on the following theorem on coercive stability of initial value for the

abstract parabolic equation.

Theorem 4.3.2. Let A be a strongly positive operator in a Banach space E and

ϕ ∈ D (A) , f ∈ Lp ([0, T ] , Eα,p) , 0 < α < 1. Then, for the solution of the initial

value problem (2.50), the following coercive inequality holds:

‖u′‖Lp([0,T ],Eα,p) + ‖Au‖Lp([0,T ],Eα,p)

≤M

[
‖Aϕ‖Eα,p +

M

α(1− α)
‖f‖Lp([0,T ],Eα,p)

]
.

Second, we consider the nonlocal boundary value problem for parabolic equa-

tion (2.51).

Theorem 4.3.3. Let 0 < 2α < 1. Then, for the solution of boundary value problem

(2.51), the following coercive stability inequality

‖ut‖
Lp

(
[0,T ],

◦
Wp

2α

[0,1]

) + ‖u‖
Lp

(
[0,T ],

◦
Wp

2+2α

[0,1]

) ≤M(α) ‖f‖
Lp

(
[0,T ],

◦
Wp

2α

[0,1]

)

is valid.



56

The proof of Theorem 4.3.3 is based on Theorem 4.2.1 on the structure of the

fractional spaces Eα,p = Eα,p (Lp [0, 1] , Ax) ,

Theorem 4.1.1 on the positivity of the operator Ax on the following theorem

on the coercive stability of the nonlocal boundary value for the abstract parabolic

equation.

Theorem 4.3.4. Let A be a strongly positive operator in a Banach space E and

f ∈ Lp ([0, T ] , Eα,p) , 0 < α < 1. Then, the solution of the nonlocal boundary value

problem( 2.52) satisfies the following coercive inequality

‖u′‖Lp([0,T ],Eα,p) + ‖Au‖Lp([0,T ],Eα,p) ≤
M

α(1− α)
‖f‖Lp([0,T ],Eα,p) .

4.3.2 Elliptic problems

First, we consider the boundary value problem (2.53).

Theorem 4.3.5. Let 0 < 2α < 1. Then, for the solution of the boundary value

problem (2.53), the following coercive stability inequality holds:

‖utt‖
Lp

(
[0,T ],

◦
Wp

2α

[0,1]

) + ‖u‖
Lp

(
[0,T ],

◦
Wp

2+2α

[0,1]

)

≤M(α)

[
‖ϕ‖ ◦

Wp

2+2α

[0,1]
+ ‖ψ‖ ◦

Wp

2+2α

[0,1]
+ ‖f‖

Lp

(
[0,T ],

◦
Wp

2α

[0,1]

)
]
.

The proof of Theorem 4.3.5 is based on Theorem 4.2.1 on the structure of

fractional spaces Eα,p = Eα,p (Lp [0, 1] , Ax) , Theorem 4.1.1 on the positivity of the

operator Ax, on the following theorems on coercive stability of boundary value prob-

lem for the abstract elliptic equation and on the structure of the fractional space

E ′α,p = Eα,p(E,A
1/2) which is the Banach space consisting of those v ∈ E for which

the norm

‖v‖E′α,p =

 ∞∫
0

(
λα
∥∥∥A1/2

(
λ+ A1/2

)−1
v
∥∥∥
E

)p dλ
λ

 1
p

is finite.

Theorem 4.3.6. (Ashyralyev and Sobolevskii, 2004) The spaces Eα,p(E,A) and

E ′2α,p(E,A
1/2) coincide for any 0 < α < 1

2
, and their norms are equivalent.
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Theorem 4.3.7. (Ashyralyev and Sobolevskii, 2004) Let A be positive operator in a

Banach space E and ϕ ∈ D (A) , ψ ∈ D (A) , f ∈ Lp([0, T ], E ′α,p), 0 < α < 1. Then,

for the solution of the boundary value problem (2.54), we have the following coercive

inequality

‖u′′‖Lp([0,T ],E′α,p) + ‖Au‖Lp([0,T ],E′α,p)

≤M

[
‖Aϕ‖E′α,p + ‖Aψ‖E′α,p +

M

α(1− α)
‖f‖Lp([0,T ],E′α,p)

]
.

Second, we consider the nonlocal boundary value problem for the elliptic equa-

tion (2.55).

Theorem 4.3.8. Let 0 < 2α < 1. Then, the solution of nonlocal boundary value

problem (2.55) satisfies the following coercive stability inequality

‖utt‖
Lp

(
[0,T ],

◦
Wp

2α

[0,1]

) + ‖u‖
Lp

(
[0,T ],

◦
Wp

2+2α

[0,1]

) ≤M(α) ‖f‖
Lp

(
[0,T ],

◦
Wp

2α

[0,1]

) .

The proof of Theorem 4.3.8 is based on Theorem 4.2.1 on the structure of

the fractional spaces Eα,p = Eα,p (Lp [0, 1] , Ax) , Theorem 4.1.1 on the positivity

of the operator Ax, Theorem 4.3.6 on the structure of the fractional space E ′α,p =

Eα,p(E,A
1/2) and on the following theorem on coercive stability of the nonlocal

boundary value problem for the abstract elliptic equation.

Theorem 4.3.9. (Ashyralyev, 2003) Let A be a positive operator in a Banach space

E and f ∈ Lp([0, T ], E ′α,p), 0 < α < 1. Then, for the solution of the nonlocal

boundary value problem (2.56), the coercive inequality

‖u′′‖Lp([0,T ],E′α,p) + ‖Au‖Lp([0,T ],E′α,p) ≤
M

α(1− α)
‖f‖Lp([0,T ],E′α,p)

is valid.



CHAPTER 5

CONCLUSION

This thesis is devoted to study of second order the positive differential operator.

The following original results are obtained:

• Green’s function of the second order differential operator with the nonlocal

condition is constructed.

• The positivity of the second order differential operator with the nonlocal con-

dition is established.

• The structure of fractional spaces generated by this differential operator is

investigated.

• In applications, theorems on well-posedness of local and nonlocal boundary

value problems for parabolic and elliptic equations are established.
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