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Epilepsy is a neurological disorder that causes people to have seizures and the main application field of 
electroencephalography. in this study, time and frequency features approach for the classifica-
tion of healthy and epileptic (EEG) signals is proposed. Features in the time 
domain are extracted using the cross correlation (CC) method. Features related to the frequency domain 
are extracted by calculating the power spectral density (PSD). in the study, these individual time and fre-
quency features are considered to carry complementary about the nature of the EEG itself. By 
using divergence analysis, distributions of the feature vectors in the feature space are quantitatively mea-
sured. As a result, using the rather than individual feature vectors is suggested for classifi-
cation. in order to show the efficiency of this approach, first of ali, the classification performances of the 
time and frequency based feature vectors in terms of overall accuracy are analyzed individually. After-
wards, the feature vectors obtained by the of the individual feature vectors are used in clas-
sification. The results achieved by dilferent classifier structures are given. Obtained performances in the 
study are comparatively evaluated by the help of the other studies for the same dataset in advance. 
Results show that the combination of the features derived from cross correlation and PSD is very prom-
ising in discriminating between epileptic and healthy EEG segments. 

1. lntroduction 

The studies on the analysis and classification of the electroen-
cephalogram (EEG) signals have become popular in the recent 
years. in most of the analysis problems. statistical methods and 
artificial neural networks (ANN) are used. Besides, by the integra-
tion of different modalities (e.g. magnetoencephalogram (MEG), 
electromyogram (EMG). functional magnetic resonance imaging 
(fMRI). diffusion optical tomography (DOT), ete.) with EEG, the 
quantity and the quality of the obtained infarmation from the 
brain are increased (Ales, 2007; Cao, 2007; Mourad, 2007). 

Epilepsy is the main application area of EEG. in the diagnosis of 
epileptic seizures, EEG and MEG are the two main techniques. Even 
the fMRI, computerized tomography (CT), magnetic resonance 
spectroscopy (MRS) and positron emission tomography (PET) are 
used in the diagnosis, thanks to its high time resolution, only 
EEG or MEG can directly measure the electrical activity in brain. 
On the other hand, spatial resolutions of EEG and MEG are not suf-
ficient to determine the cortical areas related to seizure directly. 
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lntracranial EEG has very good time resolution. However, this tech-
nique is used only in exceptional situations due to the high risk po-
tential for the subject (Calderon, 2007). 

EEG is used in brain computer interface (BCl) designs as the 
control signal. BCl technology has great potential to provide func-
tional increase and independence to individuals with severely dis-
abled people. The studies in BCl research are increasing in the 
recent years (Felton, 2007; Müller-Putz & Pfurtscheller, 2008). 

EEG classification is used also far sleep analysis (Kassebaum, 
2008), understanding the depth of anesthesia (Linares-Perdomo, 
2007), detecting drowsiness (Nodine, 2008), ete. There is ongoing 
research for the application potential of EEG to the diseases like 
bipolar disorder and hyperactivity (Walshaw. 2007). 

Ali these studies in the literature show the importance and the 
potential of EEG classification. 

Feature extraction is one of the most important steps in signal 
classification. When the features are not appropriate far the given 
classification problem, obtained performances are unsatisfactory. 
in this case, even the classification algorithm is optimally 
determined for the problem, because of the improper features, 
the algorithm cannot generate high performance. Therefare, it is 
mandatory to find and extract suitable features from the raw sig-
nals to be able to obtain good classification results. 
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Table 1 
Recording conditions far each of the sets. 

Set Recording conditions 
A (Healthy) Relaxed in an awake state with eyes open 
B (Healthy) Relaxed in an awake state with eyes closed 
C Recorded from the hippocampal formation of the opposite hemisphere of the brain (seizure-free) 
D Recorded from within the epileptogenic zone (seizure free) 
f During seizure activity 

Table 2 
Recording settings. 

Settings 

Channels 
Reference 
ADC 
Sampling frequency 
Band-pass filter 
Electrode placement 

Value 

128 
Average common 
12 bit 
173.61 Hz 
0.53-40 Hz 
lnternational 10-20 system 

Time and frequency domain based feature extraction methods are commonly used in the feature extraction processes of biologi-cal signals. in this paper, combined time and frequency features for the classification of electroencephalogram signals are consid-
ered. As time domain features, cross-correlations of the EEG time series are selected (Chandaka, Chatterjee, & Munshi, 2009) due to their high performance in classification. As frequency domain fea-tures, spectral power ratios of the main EEG bands (theta, delta, al-pha, beta and were calculated after application of discrete 
Fourier transform (DIT) to the EEG series. Calculating power spec-
trum for different EEG frequency bands is a popular method in lit-erature (Nguyen-Ky, Wen, & Li, 2009). 

Up to now, many classifier structures have been used in the classification of EEG signals. Lotte, Congedo, Lecuyer, Lamarche, and Arnaldi (2007) analyzed the classification algorithms in the EEG based BCI designs. They compared the performances of differ-ent algorithms in the literature and mentioned the important points to take into consideration in determining the appropriate classification algorithm for a specific BCI. 
Mililer, Anderson. and Birch (2003) gave some examples for the application of EEG data to linear and non-linear methods in their study. in the end, they summarized the advantages and disadvan-

tages of these methods. As a result, si mplicity usually generated the best result. Therefore, they preferred linear methods. On the other hand, they showed that non-linear methods generated better results ( especially in complex or large datasets) in some applica-
tions. According to this study, it can be concluded that the linear and the non-linear methods can be appropriate in different classi-fication problems. in the EEG based BCI systems, it is considered 

that the kernel based methods like Support Vector Machines (SVMs) are the most advanced methods (Zhong, Lotte, Girolami, & Lecuyer, 2008). 
in Section 2, EEG dataset used in the study is described. in Sec-tion 3, methods used for feature extraction and feature selection will be explained. Section 4 shortly mentions about the classifiers which are utilized in the study. Obtained classification results by using these classifiers are given in Section 5. Finally, conclusions derived from the study and future work are described in Section 6. 

2. EEG dataset 

in this study, the dataset used in Andrzejak et al. (2001) paper is considered. in the dataset, there are 100 single channel EEG seg-ments of 23.6 s acquired from different subjects for each of 5 dif-ferent sets. in Tables 1 and 2, recording conditions and settings for each of the sets are given. respectively. 
in this study, only 2 sets (classes) are considered. Set A was formed with the segments taken from healthy surface EEG record-ings that were carried out on five healthy volunteers (eyes open) using a standardized electrode placement scheme. Set E was formed with the segments taken from five patients and contains seizure activity. More information about the dataset can be found in the given reference. in Fig. 1, healthy and epileptic EEG examples from the database are given. 

3. Methods 

3.1. Feature extractian 

Feature extraction is a very crucial step in signal classification problems, because it directly influences the classification perfor-
mance. When the features are not distinctive. it is Jess likely to achieve good classification performances. in this study, features based on time and frequency domain are extracted and then com-bined for classification of two different (healthy or epileptic) EEG states. 

3.1.1. Cross-corre/ation 
Cross-correlation (CC) features are derived in the same way as Chandaka et al. (2009) paper. The cross-correlation (Rxy) oftwo dis-crete signals (e.g. x(n) and y(n)) is given by the following formula: 

R ( ) -{ Xn,mYn m O xy m - n=O 

Ryx(-m) m < O 
(1) 

in Eq. (1 ), m is the time shift parameter. N is the length of x(n) for Rxy or length of y(n) for Ry,. lf x(n) and y(n) have the same length (e.g. M), length of Rxy is 2 x M - 1. in Fig. 2a and b, cross correlo-
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Flg. t, EEG examples for two different sets: set A (healthy) and set E (epileptic). 
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Fig. 2. (al Cross correlogram of healthy EEG segments and (b) cross correlogram ofa healthy andan epileptir EEG segment. 

gram of two healthy EEG segments and cross correlogram of a 
healthy and an epileptic segment are given, respectively. 

The five features derived from R.y are listed below: 

( 1) pv: peak value of the cross correlogram. 
(2) ins: instant value corresponding to the peak value. 

""M m-R(m) (3) centroid = L,mMM (2) 
Lm--MR(m) 

(4) eqwidth: equivalent width = L:"p;R(m) (3) 

LM -R(m) (5) msa: mean square abscissa = ___ _ 
Lma-MR(m) 

(4) 

in feature extraction step of the cross-correlation method, first 
of ali, one of the EEG segments in the database is chosen as refer-
ence. Afterwards, cross-correlations of ali other EEG segments with 
the reference one are calculated. Therefore, the number of feature 
vectors is decreased by 1. ln this paper, the reference EEG segment 
is chosen as the first healthy EEG segment in the database. 

3.1.2. Spectral band powers 
in EEG literature, EEG frequency spectrum is generally analyzed 

according to some specific frequency bands. These sub-bands are 
called delta (o), theta (O), alpha beta (/1) and (y) bands. 
However, there are no strict frequency ranges for these different 
bands. in Table 3, frequency band ranges in several references 
are given. 

in this paper, ranges are selected as: delta (0.5-4), theta (4-8), 
alpha (8-13), beta (13-25) and (25-40). Dastidar (2007) 
states that the individual frequency sub-bands may be more repre-
sentative of brain dynamics than the entire EEG. At the end of his 
thesis, he observed that the sub-bands gave more information 

Table l 
EEG frequency band ranges (Hz) in several references. 

Reference delta theta alpha beta gamma 
(,1) (ff) (o<) (/J) (y) 

Gorcia Molina (2004) 2-4 4-8 8-13 13-30 >30 
Allison (2003) 0.5-4 4-8 8-13 13-40 
Dastidar (2007) 0-4 4-8 8-13 13-30 30-60 
Krepki (2004) 0.5-3.S 3.5-8 8-13 13-25 25-40 
Calderon (2007) 0.5-4 4-8 8-13 13-25 25-70 

about the underlying neuronal activities and some kind of changes 
in EEG could be noticed only when ali sub-bands were analyzed 
separately. Using this observation. in this paper, total powers of 
the EEG sub-bands over the whole band are extracted as features. 
First of ali, discrete Fourier transforms (DFT) of EEG segments in 
the database are calculated (Eq. (5)) 

N-1 ,;;---X(k)=L,x(n) e----,,--- k=0.1, .... N~l (5) 
n-0 

in Eq. (5), x(n) represents the discrete samples of EEG data. N is the 
length of the EEG data. 

After calculation of DFT (X(k)) of EEG samples, square of the 
absolute value of X(k) is computed to obtain the power spectrum 
of EEG (Eq. (6)) 

Power spectral density = P(k) = 1X(k)l2 (6) 
in Fig. 3(a) and (b), power spectrums ofa healthy andan epilep-

tic EEG segment are presented, respectively. 
Total powers are calculated for each sub-band (b, O, p, y) using 

Eq. (6). Features are defined as the ratios (prdelta, prtheta, pralpha, 
prbeta, prgamma) of each sub-band power (pdelta, ptheta, palpha, 
pbeta, pgamma) to the whole band (0.5-40 Hz) power (ptotal). 
Thus, there are totally five features derived from the EEG time 
series. 
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Fig. 3. Power spectrums ora healthy (a) andan epileptic (b) EEG segment. 

Table 4 
The reatures used in the study. 

Feature no. 
Features pv 

2 
ins 

3 
centroid 

4 
eqwidth 

5 
msa 

The values of the features in the feature vectors were normal-
ized between O and 1 before classification step. 

in Table 4, the features used in the study are given. 

3.2. Divergence analysis 

in the study, by using divergence analysis (Cohen, 1986); per-
formances of different feature extraction methods are measured 
quantitatively and the best features among ali the extracted ones 
within a feature set are searched. The divergence is a class separa-
bility measure and gives information about the distribution of class 
vectors in the feature space. Divergence value decreases for indis-
criminately scattered class vectors. Formulations can be found in 
the given reference. in the study, obtained features are ordered 
from the most discriminative to the least according to the diver-
gence values. 

4. Classlfters 

To be able to classify healthy and epileptic EEG data, in addition 
to the K-Nearest Neighbor (K-NN) classifier, MATI.AB-based two 
different free toolboxes are used: LS-SVMlabt.5 (Pelckmans et al., 
2003) and PRTools 4.0. I.S-SVMlab 1.5 Toolbox is specialized for 
I.S-SVM method. Classifiers chosen from PRTools 4.0 are: Support 
Vector Machines (SVMs), Parzen, Fisher Discriminant Analysis, Bin-

6 
prdelta 

Table 5 

7 
prtheta 

8 
pralpha 

9 
prbeta 

Distribution or reature vectors in the training and the test sets. 

Feature vectors Healthy Epileptic 

Training Test Training 
CC 50 49 50 
PSD 50 50 50 
Combination 50 49 50 

10 
prgamma 

Test 

50 
50 
50 

ary Decision Tree, Naive Bayes, Nearest Mean and Quadratic 
classifiers. 

The K Nearest Neighbor (K-NN) is a widely used, instance based 
learning algorithm. in this algorithm a feature vector in the test set 
is classified by assigning it to the most frequently represented vec-
tor class in the K (in this study K• 3) nearest training vectors 
(Duda, Hart, Stork, 2001 ). Deciding upon the K value is critical 
since it directly affects the classification performance. 

Support Vector Machines rely on preprocessing the data to rep-
resent patterns in dimensions higher than the original feature 
space dimension. it accomplishes this task using an appropriate 
nonlinear mapping to higher dimension. By this way, data samples 
from two different classes become separable by a hyper-plane 
(Duda et al., 2001 ). Least Squares Support Vector Machines (LS-
SVM) are reformulations to standard SVMs which lead to solving 
linear Karush-Kuhn-Tucker (KKT) systems (Suykens, Van Gestel. 
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Table 6 
Performances far three different feature conditions and three different partitions. 

Partition Features Classifiers and total accuracy (%) 

K-NN SVM LS-SVM Parzen 
CC 94.94 87.87 91.91 93.93 
PSD 90 80 97 85 
Combination 97.97 88.88 100 91.91 

2 CC 92.92 86.86 95.95 93.93 
PSD 87 86 84 85 
Combination 91.91 87.87 97.97 89.89 

3 CC 95.95 92.92 98.98 95.95 
PSD 90 92 88 87 
Combination 94.94 93.93 97.97 94.94 

Table 7 
Distribution of the extended feature vectors in the training and the test sets. 

Feature vectors Healthy Epileptic 
Training Test Training Test 

CC 800 799 800 800 
PSD 800 800 800 800 
Combination 800 799 800 800 

De Brabanter, De Moor, & Vandewalle, 2002). in the study, LS-SVM 
classifier of LS-SVMlabt.5 is used. Tenfold cross validation and 
Bayesian initialization are done for determining parameters 
optimally. 

in Parzen-window classification, the densities for each category 
are estimated and a test point is classified by the label correspond-
ing to the maximum posterior. The decision regions depend on the 
choice ofthe window function (Duda et al., 2001). 

in Fisher's linear discriminant analysis (LDA), a linear function is 
obtained which provides the maximum ratio of between-class 
scatter to within-class scatter (Duda et al., 2001 ). By adding addi-
tional terms involving the products of components of feature vec-
tors, quadratic discriminant function is obtained (Duda et al., 
2001 ). Thus, quadratic discriminant function has additional coeffi-
cients and generates more complicated separating surfaces. The 
separating surface is a second-degree or hyperquadric surface. 

Decision Trees are formed by a sequence of queries which gen-
erate nodes along a path from root to leaf (Duda et al.. 2001 ). 

When the dependencies among the features are unknown, it is 
very common to make an assumption such that, given the cate-
gory, the features are conditionally independent. This is the 
assumption behind the Naive Bayes classifier (Duda et al., 2001 ). 

When the prior probabilities are the same for ali classes, a 
feature vector is classified by measuring the Euclidean distances 
between each feature vector and each of class mean vectors (Duda 

Performances far extended feature vectors and three different partitions. 
Partition Features Classifiers and total accuracy (%) 

K-NN SVM LS-SVM Parzen 
CC 100 100 100 100 
PSD 100 75 100 100 
Combination 100 100 100 100 

2 CC 100 100 100 100 
PSD 100 50 100 100 
Combination 100 100 100 100 

3 CC 100 100 100 100 
PSD 100 50 100 100 
Combination 100 100 100 100 

LDA Quad Decision Tree Naive Bayes Nearest Mean 
87.87 87.87 95.95 93.93 89.89 
89 96 90 85 86 
89.89 100 98.98 94.94 91.91 
85.85 92.92 95.95 94.94 85.85 
92 98 91 80 89 
90.90 98.98 95.95 96.96 86.86 
89.89 94.94 95.95 95.95 90.90 
93 94 86 79 86 
93.93 97.97 98.98 94.94 95.95 

Table9 
Divergence values far the CC non-segmented case. 

Feature na. 2 3 4 5 
pv pv pv pv pv 

eqwidth eqwidth eqwidth eqwidth 
msa msa msa 

ins ins 
centroid 

Divergence 2.2705 2.3326 2.3507 2.3545 2.3581 

Table 10 
Divergence values far the CC segmented case. 

Feature na. 2 3 4 5 
pv pv pv pv pv 

ins ins ins ins 
eqwidth eqwidth eqwidth 

centroid 
msa 

Divergence 7.2469 7.4545 7.6507 7.6866 7.8220 

et al., 2001 ). Afterwards. the feature vector's class is determined by 
the nearest mean vector (minimum distance classifier). 

in conclusion. in the paper. a total of nine classifiers are utilized 
for the classification of the EEG data. Since the of the 
classifiers are published in the literature in advance, details of 
the classifiers are not given in this paper. 

S. Results 

Ali the classifications are performed in MATLAB software. Data-
base is divided into training and test sets after feature extraction 
steps as shown in Table 5. 

LDA Quad Decision Tree Naive Bayes Nearest Mean 
100 100 100 100 96.87 
75 96.87 100 93.75 65.62 
100 100 100 100 96.87 
100 96.49 100 100 96.68 
75.12 96.87 100 93.06 65.87 
100 100 100 100 96.99 
100 100 100 100 96.74 
78.87 96.62 100 93.87 66.62 
100 100 100 100 96.81 
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Table 11 
Divergence values for the PSD non-segmented case. 

Feature no. 2 3 4 5 
prtheta prtheta prtheta 
prbeta prbeta prbeta prbeta 

prgamma prgamma prgamma 
prdelta 
pralpha 

Divergence 0.3463 0.4798 0.7362 0.7978 0.8985 

Table 12 
Divergence values for the PSD segmented case. 

Feature no. 2 3 4 5 
prbeta prbeta prbeta 

prgamma prgamma prgamma 
prtheta prtheta prtheta 

pralpha pralpha 
prdelta 

Divergence 0.1627 0.3219 0.4210 0.4457 0.4621 

Three different classification conditions are considered using: 

- CC features. 
- PSD features, 
- combination of CC and PSD features. 

Besides, three different partitions of training and test features 
are taken into consideration in order to show the dependency of 
the classification performances on the distribution of feature vec-
tors in the training and test sets. in partition 1, training and test 
feature vectors are taken in the same order as given in the original 
dataset whereas in partitions 2 and 3, the feature vectors are se-
lected in a random manner. Table 6 shows the performances for 

Table 13 
Divergence values far the combined non-segmented case. 

Feature 110. 2 3 4 5 
pv pv pv pv pv 

prtheta prtheta prtheta prtheta 
pralpha pralpha pralpha 

prgamma prgamma 
msa 

1.5133 2.1197 2.3014 2.3492 2.3660 

Table 14 
Divergence values for the combined segmented case. 

no. 2 3 4 5 
pv pv pv pv pv 

prbeta prbeta prbeta prbeta 

three different feature conditions and three different partitions of 
feature vectors. 

in Table 6, performance measure is given as the total classifica-
tion accuracy. Since the original EEG records have 23.6 s length 
(4096 samples). they cannot be regarded as stationary signals. 
Therefore, the records are segmented into 16 segments of 256 sam-
ples in another classification approach. Distribution of the ex-
tended feature vectors for this approach is given Table 7. 

Table 8 shows the performances for three different feature con-
ditions and three different partitions of extended feature vectors. 

in order to show the appropriateness of the combination and 
segmentation approach, divergence analysis is perfonned for both 
the individual CC, PSD features and the combination of them in the 
segmented and non-segmented cases. Tables 9-14 show the total 
divergence values for the given feature combinations. 

6. Conclusions and future work 

Looking at the classification perfonnances given in Table 6, it 
could be inferred that LS-SVM, Binary Decision Tree and Quadratic 
classifier generated higher classification accuracies as compared 
with the other classifiers. Moreover, combination of features gen-
erally yields the highest accuracy as compared to the individual 
CC and PSD features. it should be noted that there is no misclassi-
fication (100% accuracy) in the test set in the first partition for LS-
SVM and Quadratic classifiers. in Table 8, it is clear that the seg-
mentation of long EEG records enhances stationary assumption 
and generates better performances. There is no misclassification 
for K-NN, LS-SVM. Parzen and Decision Tree classifiers in any of 
the three different partitions. CC features generate better perfor-
mances as compared to PSD features when they are utilized indi-
vidually. On the other hand, the combination of the features 
reached the highest classification accuracies again. 

Ordered features according to the divergence value in Tables 9 
and 10 show that the usage of extended (segmented) records gen-

6 7 8 9 10 

pv pv pv pv pv 
prtheta prtheta prtheta prtheta prtheta 
pralpha pralpha pralpha pralpha pralpha 
prgamma prgamma prgamma prgamma prgamma 
msa msa msa msa msa 
centroid centroid centroid a,ntroid centroid 

ins tns ins ins 
prdelta prdelta prdelta 

prbeta prbeta 
eqwidth 

2.4373 2.4504 2.4531 2.6479 2.6551 

6 7 8 9 10 
pv pv pv pv pv 
prbeta prbeta prbeta prbeta prbeta 

prgamma prgamma prgamma prgamma prgamma prgamma prgamma prgamma 
prdelta prdelta prdelta prdelta prdelta prdelta 

pralpha pralpha pralpha pralpha pralpha pralpha 
prtheta prtheta prtheta prtheta 

ins ins ins ins 
eqwidth eqwidth eqwidth 

centraid centroid 
msa 

Divergence 7.2469 7.8257 8.5197 8.7449 8.9293 9.2718 9.5787 9.5906 9.5910 9.6034 
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Table 15 
Classification accuracies in the literature far the same dataset. 

Reference Features Classifier Total accuracy (%) 

Subasi (2007) Wavelet ME 93.2 
Wavelet MLP 94.5 

Chandaka et al. (2009) CC LS-SVM 95.95 
Polat and Günes (2007) FFT Decision Tree 98.72 
Polat and Gunes (2008a) DFT Decision Tree 99.02 

AR Decision Tree 99.32 
DWT Decision Tree 92 
DFT, DBDR Decision Tree 99.12 
AR, DBTR Decision Tree 98.94 
DWT, DBDR Decision Tree 89.50 

Polat and Gunes (2008b) PCA FFT AIRS 100 

erates higher divergence values. Besides, pv feature is the most dis-
criminative feature among ali other CC features. in Tables 11 and 
12, it is clear that PSD based features have lower divergence values 
than the CC features. On the other hand, there is a reduction in the 
divergence value for the segmented records. in Tables 13 and 14. 
the combined features for the segmented records generate highest 
divergence values. These results support the appropriateness of the 
combined features and the segmented records. 

Obtained results in Tables 6 and 8 give the highest classification 
accuracies as compared to the other studies (Table 15) encoun-
tered in the literature which use the same dataset. 

in the evaluation ofthe classification results of different studies, 
partition methods of training and test sets should be known. in 
Subasi (2007), each of the EEG time segments was divided into 
eight parts before feature extraction step. Thus, totally 1600 fea-
ture vectors are generated. Seventy percent of the training vectors 
are used for training and the remaining 30% for test step. in a re-
cent study using the same dataset (Chandaka et al., 2009), two dif-
ferent sizes of training and test set were used. in the first study, 
partitions of the feature vectors were performed in the same way 
as described in Table 5. in the second case, EEG time segments 
were windowed by a rectangular window composed of 512 dis-
crete data. Thus, a total of 1600 EEG segments were generated. 
The overall accuracies were 95.96% and 95.5%, respectively, for 
the two different partitions. in Polat and Günes (2007), again, 
EEG time series of 4096 samples were windowed by a rectangular 
window composed of 256 discrete data. Thus, a total of 3200 EEG 
segments were generated. Five and tenfold cross-validations were 
performed in classification. 98.68% and 98.72% classification accu-
racies were achieved, respectively. in Polat and Gunes (2008a), 
each of the EEG time series were divided into 16 parts. Similarly, 
totally 3200 feature vectors are generated. However, distance 
based data reduction (DBDR) method was used to reduce from 
3200 vectors to 1600 vectors. Results were given for the partitions 
with and without DBDR. Tenfold cross validation method was used 
in classification. in Polat and Gunes (2008b ), each of the EEG time 
series were divided into 16 parts. Different training and test set ra-
tios were considered: 50-50%, 70-30%, and 80-20%. The obtained 
test classification accuracies for these partitions were 99.81%, 
100% and 100%, respectively. Hundred percent accuracy was ob-
tained for tenfold cross validation. 

in this study, individual performances of the classifiers are ta-
ken into consideration. However voting of classifiers may be capa-
ble of generating more robust classification performances which 
can decrease the sensitivity of the results to the different partitions 
of the feature vectors. 
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